Production year
2019
© Frédéric MALIGNE / LAAS / CNRS Images
20190070_0016
Analyse et évaluation du diagnostic par clustering dynamique avec le logiciel DyClee, pour la chaudière d'un procédé de production de vapeur, lors d'une recherche méthodologique dans le domaine du diagnostic par l'équipe DISCO (DIagnostic Supervision et COnduite) du Laboratoire d'analyse et d'architecture des systèmes (LAAS). Comme lors d’un examen médical, le diagnostic permet d’estimer l’état d’un système (une machine comme cette chaudière) en localisant, identifiant et expliquant ses défauts. Un diagnostic est créé en interprétant des données issues de mesures réalisées sur le système en fonctionnement. Pour ce faire, l’apprentissage automatique (intelligence artificielle) est de plus en plus utilisé. Le clustering en particulier, est un outil de partitionnement des données brutes pour lequel la machine n’est pas assistée par l’homme (au contraire de la classification supervisée, où des exemple étiquetés par leur classe d'appartenance sont fournis à l’algorithme durant sa phase d’apprentissage). Le diagnostic garantit la sûreté, la résilience et la maintenabilité des systèmes. Il existe des applications variées dans les secteurs industriels (aéronautique, agriculture, automobile, médecine, spatial).
The use of media visible on the CNRS Images Platform can be granted on request. Any reproduction or representation is forbidden without prior authorization from CNRS Images (except for resources under Creative Commons license).
No modification of an image may be made without the prior consent of CNRS Images.
No use of an image for advertising purposes or distribution to a third party may be made without the prior agreement of CNRS Images.
For more information, please consult our general conditions
2019
Our work is guided by the way scientists question the world around them and we translate their research into images to help people to understand the world better and to awaken their curiosity and wonderment.