Vignette Laboratoire Institut des sciences du mouvement - Etienne-Jules Marey

Institut des sciences du mouvement - Etienne-Jules Marey (ISM)

MARSEILLE CEDEX 09

L'ISM a développé une expertise reconnue dans l'approche multidisciplinaire des mécanismes qui sous-tendent le comportement moteur et la cognition complexes, la physiologie, la sociologie et la biomécanique. Il possède également une expertise dans le domaine de la réalité virtuelle, du biomimétisme et de la biorobotique. L'ISM se concentre sur l'étude du mouvement sous différents angles scientifiques. Le principal domaine de recherche du laboratoire concerne l'étude et la modélisation du mouvement humain.

20220152_0003
Open media modal

Sportif participant à la course Marseille-Cassis, lors de la montée de la Gineste dans les Bouches-du-Rhône. Cette course de 20 km avec dénivelé est l'occasion pour les scientifiques d'étudier les différents profils de récupération sur certains coureurs et coureuses amateurs. Le premier caractère novateur de ce projet nommé GenderRecov réside dans l’association du suivi de la récupération fonctionnelle (récupération des qualités de course et de saut) à celui de la récupération structurale …

Photo
20220152_0003
Sportif participant à la course Marseille-Cassis
20220152_0009
Open media modal

Peloton de sportifs et sportives participant à la course Marseille-Cassis de 20 km avec dénivelé, lors de la montée de la Gineste dans les Bouches-du-Rhône. En arrière-plan la ville de Marseille. Ici, la pente inclinée de 5 % accroît l'effort des coureurs et des coureuses. En comparaison avec la course sur terrain plat, la phase de poussée devient plus longue et la vitesse de course diminue d'environ 2 km/h. Cette course est l'occasion pour les scientifiques d'étudier les différents profils de…

Photo
20220152_0009
Peloton de sportifs participant à la course Marseille-Cassis
20220152_0014
Open media modal

Peloton de sportifs et sportives à la course Marseille-Cassis de 20 km avec dénivelé, lors de la montée de la Gineste dans les Bouches-du-Rhône. En arrière-plan la ville de Marseille. Ici, la pente inclinée de 5 % accroît l'effort des coureurs et des coureuses. En comparaison avec la course sur terrain plat, la phase de poussée devient plus longue et la vitesse de course diminue d'environ 2 km/h. Cette course est l'occasion pour les scientifiques d'étudier les différents profils de récupération…

Photo
20220152_0014
Peloton de sportifs participant à la course Marseille-Cassis
20220152_0004
Open media modal

Sportif participant à la course Marseille-Cassis, lors de la montée de la Gineste dans les Bouches-du-Rhône. Cette course de 20 km avec dénivelé est l'occasion pour les scientifiques d'étudier les différents profils de récupération sur certains coureurs et coureuses amateurs. Le premier caractère novateur de ce projet nommé GenderRecov réside dans l’association du suivi de la récupération fonctionnelle (récupération des qualités de course et de saut) à celui de la récupération structurale …

Photo
20220152_0004
Sportif participant à la course Marseille-Cassis
20220152_0010
Open media modal

Peloton de sportifs et sportives participant à la course Marseille-Cassis de 20 km avec dénivelé, lors de la montée de la Gineste dans les Bouches-du-Rhône. En arrière-plan la ville de Marseille. Ici, la pente inclinée de 5 % accroît l'effort des coureurs et des coureuses. En comparaison avec la course sur terrain plat, la phase de poussée devient plus longue et la vitesse de course diminue d'environ 2 km/h. Cette course est l'occasion pour les scientifiques d'étudier les différents profils de…

Photo
20220152_0010
Peloton de sportifs participant à la course Marseille-Cassis
20220154_0002
Open media modal

Visiter une ville comme un piéton ou comme un oiseau ? C’est l’une des expériences proposées par l'Institut des sciences du mouvement (ISM) pour la troisième édition des Visites insolites du CNRS. Les participants ont pu expérimenter la réalité virtuelle et la réalité augmentée en immersion complète à travers différents scénarios. A l'occasion de la Fête de la science 2022, le CNRS a ouvert les portes de plus de 60 laboratoires, observatoires, plateformes scientifiques et sites de recherche en…

Photo
20220154_0002
Visite d'une ville en réalité virtuelle organisée par l'ISM, Visites insolites du CNRS 2022
20220153_0010
Open media modal

Hexarotor SOFIa volant dans l'arène de vol de la Méditerranée, à l'Institut des Sciences du Mouvement (ISM), à Marseille. Ce prototype est capable d'estimer la distance qu'il a parcouru grâce à ses oscillations, en intégrant mathématiquement le flux optique (défilement du paysage) à l'aplomb remis à l'échelle. Cette remise à l'échelle utilise la hauteur du sol estimée grâce au flux optique de divergence, qui est créé par les oscillations du drone. La mesure de la distance parcourue basée sur le…

Photo
20220153_0010
Drone nommé Hexarotor SOFIa, dont le déplacement est inspiré des abeilles
20220153_0015
Open media modal

Réglage d'un prototype de patte robotique inspiré des pattes de fourmis. Les scientifiques essayent de reproduire le fonctionnement et la structure de ce mécanisme biologique pour l'intégrer à un robot hexapode. Ils étudient notamment comment augmenter son autonomie et son déplacement grâce à la répartition des forces en s'inspirant de l'exosquelette de la fourmi, l'angle d'inclinaison de ses pattes, et des organes sensoriels qui lui permettent d'améliorer ses performances énergétiques lors de…

Photo
20220153_0015
Réglage d'un prototype de patte robotique inspiré des pattes de fourmis
20220153_0016
Open media modal

Prototype de patte robotique inspiré des pattes de fourmis. Les scientifiques essayent de reproduire le fonctionnement et la structure de ce mécanisme biologique pour l'intégrer à un robot hexapode. Ils étudient notamment comment augmenter son autonomie et son déplacement, grâce à la répartition des forces en s'inspirant de l'exosquelette de la fourmi, de l'angle d'inclinaison de ses pattes, et des organes sensoriels qui lui permettent d'améliorer ses performances énergétiques lors de la marche…

Photo
20220153_0016
Prototype de patte robotique inspiré des pattes de fourmis
20220153_0017
Open media modal

Réglage d'un prototype de patte robotique inspiré des pattes de fourmis. Les scientifiques essayent de reproduire le fonctionnement et la structure de ce mécanisme biologique pour l'intégrer à un robot hexapode. Ils étudient notamment comment économiser l'énergie nécessaire à son déplacement pour augmenter son endurance, grâce à la répartition des forces en s'inspirant de l'exosquelette de la fourmi, l'angle d'inclinaison de ses pattes, et de ses organes sensoriels. La patte robotique est…

Photo
20220153_0017
Réglage d'un prototype de patte robotique inspiré des pattes de fourmis
20220153_0014
Open media modal

Prototype de patte robotique inspiré des pattes de fourmis. Les scientifiques essayent de reproduire le fonctionnement et la structure de ce mécanisme biologique pour l'intégrer à un robot hexapode. Ils étudient notamment comment augmenter son autonomie et son déplacement, grâce à la répartition des forces en s'inspirant de l'exosquelette de la fourmi, de l'angle d'inclinaison de ses pattes, et des organes sensoriels qui lui permettent d'améliorer ses performances énergétiques lors de la marche…

Photo
20220153_0014
Prototype de patte robotique inspiré des pattes de fourmis
20200013_0001
Open media modal

Modèle haute résolution d'un pied humain incluant les principaux os et les corps mous. Le maillage volumique (maillage tétraédrique) est établi à partir de données scanner et IRM. Le modèle est mis en mouvement pour simuler la marche ou la course, afin d'étudier des paramètres biomécaniques internes : pression sur les cartilages, contraintes et déformations des ligaments (estimation des ruptures), agencement réaliste des os, étude détaillée des corps mous. L'objectif est de mieux comprendre la…

Photo
20200013_0001
Modélisation utilisée dans le cadre d'une étude du comportement biomécanique du pied humain
20200013_0002
Open media modal

Résultats d'une simulation numérique dynamique du comportement biomécanique du pied humain. Un modèle haute résolution d'un pied humain, incluant les principaux os et les corps mous, est mis en mouvement pour simuler la marche ou la course afin d'étudier des paramètres biomécaniques internes. Ces trois images permettent de visualiser la pression plantaire (pression de contact, en haut à gauche), les contraintes et déformations dans les ligaments (en haut à droite) et les pressions de contact…

Photo
20200013_0002
Résultats d'une simulation numérique dynamique du comportement biomécanique du pied humain
Open media modal

Uniquement disponible pour exploitation non commerciale

Pour toute exploitation commerciale contacter le producteur délégué

Comment optimiser les performances d'un robot hexapode en améliorant à la fois son autonomie d'énergie et ses déplacements ? En copiant la structure et l'agencement de pattes d'insectes ! Le laboratoire de robotique de l'ISM à Marseille (CNRS, Université Aix-Marseille) a mis au point, pour leur robot AntBot, des pattes biomimétiques conçues en 3D. Un robot déjà inspiré de la fourmi du désert afin de s'orienter sans GPS...

Vidéo
7732
Bio-Robot (Le)
20200003_0061
Open media modal

Cycliste sur un vélo d'entraînement dans le cadre d'une étude biomécanique de son mouvement. Il a été équipé de capteurs électromyographiques et de marqueurs réfléchissants. Les premiers enregistrent l’activité neuromusculaire (les contractions musculaires causées par les commandes électriques du système nerveux central), afin de comprendre la coordination musculaire nécessaire au mouvement, orchestrée par le névraxe. Les marqueurs sont utilisés pour la capture optique du mouvement (motion…

Photo
20200003_0061
Etude biomécanique du mouvement d’un cycliste
20200003_0052
Open media modal

Participant répondant à un questionnaire lors du "Trier social stress test" (TSST), un protocole de test en laboratoire dont l’objectif est de créer chez lui un stress psychosocial aigu. Il doit mesurer son état d’anxiété et décrire les émotions qu’il a ressenties. Les scientifiques ont également observé les conséquences sur sa capacité à réaliser des tâches motrices et de réflexion.

Photo
20200003_0052
Protocole "Trier Social Stress Test" (TSST)
20200003_0057
Open media modal

Cycliste sur un vélo d'entraînement dans le cadre d'une étude biomécanique de son mouvement. Il a été équipé de capteurs électromyographiques et de marqueurs réfléchissants. Les premiers enregistrent l’activité neuromusculaire (les contractions musculaires causées par les commandes électriques du système nerveux central), afin de comprendre la coordination musculaire nécessaire au mouvement, orchestrée par le névraxe. Les marqueurs sont utilisés pour la capture optique du mouvement (motion…

Photo
20200003_0057
Etude biomécanique du mouvement d’un cycliste
20200003_0062
Open media modal

Cycliste sur un vélo d'entraînement dans le cadre d'une étude biomécanique de son mouvement. Il a été équipé de capteurs électromyographiques et de marqueurs réfléchissants. Les premiers enregistrent l’activité neuromusculaire (les contractions musculaires causées par les commandes électriques du système nerveux central), afin de comprendre la coordination musculaire nécessaire au mouvement, orchestrée par le névraxe. Les marqueurs sont utilisés pour la capture optique du mouvement (motion…

Photo
20200003_0062
Etude biomécanique du mouvement d’un cycliste
20200003_0054
Open media modal

Pose de capteurs électromyographiques sur les muscles des membres inférieurs d'un cycliste dans le cadre d'une étude biomécanique de son mouvement. Les électrodes, placées sur les muscles sollicités pour le mouvement étudié, enregistrent l’activité neuromusculaire (les contractions musculaires causées par les commandes électriques du système nerveux central). L'objectif est de comprendre la coordination musculaire nécessaire au mouvement, orchestrée par le névraxe. Pour avoir une description…

Photo
20200003_0054
Etude biomécanique du mouvement d’un cycliste
20200003_0058
Open media modal

Cycliste sur un vélo d'entraînement dans le cadre d'une étude biomécanique de son mouvement. Il a été équipé de capteurs électromyographiques et de marqueurs réfléchissants. Les premiers enregistrent l’activité neuromusculaire (les contractions musculaires causées par les commandes électriques du système nerveux central), afin de comprendre la coordination musculaire nécessaire au mouvement, orchestrée par le névraxe. Les marqueurs sont utilisés pour la capture optique du mouvement (motion…

Photo
20200003_0058
Etude biomécanique du mouvement d’un cycliste
20200003_0063
Open media modal

Cycliste sur un vélo d'entraînement dans le cadre d'une étude biomécanique de son mouvement. Il a été équipé de capteurs électromyographiques et de marqueurs réfléchissants. Les premiers enregistrent l’activité neuromusculaire (les contractions musculaires causées par les commandes électriques du système nerveux central), afin de comprendre la coordination musculaire nécessaire au mouvement, orchestrée par le névraxe. Les marqueurs sont utilisés pour la capture optique du mouvement (motion…

Photo
20200003_0063
Etude biomécanique du mouvement d’un cycliste

CNRS Images,

Nous mettons en images les recherches scientifiques pour contribuer à une meilleure compréhension du monde, éveiller la curiosité et susciter l'émerveillement de tous.