Reportage Photo

Adaptations et réponses des cellules aux stress mécaniques

Les cellules d’un organisme multicellulaire sont génétiquement homogènes. Néanmoins, les fonctions, les structures et les comportements de ces cellules varient. Beaucoup de ces différences sont dues à des programmes distincts d’expressions des gènes.

20240011_0001
Avec le projet MecEpi, les scientifiques s’intéressent à des cellules de mammifères et cherchent à mieux comprendre l’adaptation et les réponses de ces cellules aux stress mécaniques. En effet, elles détectent les changements de leur microenvironnement (comme les variations des apports en nutriments, les concentrations hormonales ou les modifications mécaniques des tissus) et réagissent en conséquence en changeant par exemple leur métabolisme, leur cycle de prolifération ou en modifiant leurs propriétés migratoires. Leurs réactions peuvent être cruciales dans un contexte pathologique au cours du développement, dans la progression des cancers et dans l’apparition des métastases.
18 médias
20240011_0001
Open media modal

Préparation d’un milieu de culture de cellules sous hotte stérile. Les scientifiques travaillent sur des cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et des fibroblastes humains (cellules principales du tissu conjonctif), cultivés in vitro. Des boîtes de Petri contenant un gel aux propriétés élastiques définies sont préparées sous une hotte stérile. Les cellules étudiées sont placées sur ce gel avec du milieu de culture…

Photo
20240011_0001
Préparation d’un milieu de culture de cellules sous hotte stérile
20240011_0010
Open media modal

Préparation d’une électrophorèse sur gel d’agarose permettant la migration de l’ADN. Des échantillons d’ADN, extraits de cellules cultivées sur des gels de différentes rigidités, sont prélevés et placés dans chacun des puits de la machine. Un courant électrique traversera le gel et permettra, au bout de 25 minutes, la migration des fragments d’ADN dans le gel afin de les séparer selon leur taille. L’ajout d’un ligand à la solution permet de bien visualiser la migration des échantillons d’ADN…

Photo
20240011_0010
Préparation d’une électrophorèse sur gel d’agarose permettant la migration de l’ADN
20240011_0018
Open media modal

Discussion sur les résultats et avancées du projet MecEpi. L’objectif de ce projet est de mieux comprendre les adaptations et les réponses des cellules souches mésenchymateuses et fibroblastes humains aux stress mécaniques. Ainsi, les scientifiques sont parvenus à définir les gènes dont l’expression varie en fonction des conditions mécaniques (conditions de culture sur gel souple ou rigide). Grâce à des outils de génomique, ils ont pu caractériser les modifications de l’organisation 3D du…

Photo
20240011_0018
Discussion sur les résultats et avancées du projet MecEpi
20240011_0017
Open media modal

Discussion concernant la partie bio-informatique du projet MecEpi. L’objectif de ce projet est de mieux comprendre les adaptations et les réponses des cellules souches mésenchymateuses et fibroblastes humains aux stress mécaniques. Après une phase de séquençage, les données sont analysées. Les régions du génome humain qui sont ciblées par les protéines régulant l’expression des gènes sont déterminées. Les scientifiques comparent les échantillons résultant de différentes conditions de culture …

Photo
20240011_0017
Discussion concernant la partie bio-informatique du projet MecEpi
20240011_0016
Open media modal

Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine (ChIP). Cette méthode permet l'étude des protéines interagissant avec un fragment précis d'ADN. Au cours de cette manipulation, les protéines d’intérêt, qui sont liées à leurs régions d’ADN cibles, sont capturées grâce à des anticorps couplés à des billes magnétiques. Après séquençage, cela permet de déterminer les régions du génome humain qui sont ciblées par les protéines régulant l…

Photo
20240011_0016
Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine
20240011_0015
Open media modal

Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine (ChIP). Cette méthode permet l'étude des protéines interagissant avec un fragment précis d'ADN. Au cours de cette manipulation, les protéines d’intérêt, qui sont liées à leurs régions d’ADN cibles, sont capturées grâce à des anticorps couplés à des billes magnétiques. Après séquençage, cela permet de déterminer les régions du génome humain qui sont ciblées par les protéines régulant l…

Photo
20240011_0015
Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine
20240011_0014
Open media modal

Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine (ChIP). Cette méthode permet l'étude des protéines interagissant avec un fragment précis d'ADN. Au cours de cette manipulation, les protéines d’intérêt, qui sont liées à leurs régions d’ADN cibles, sont capturées grâce à des anticorps couplés à des billes magnétiques. Après séquençage, cela permet de déterminer les régions du génome humain qui sont ciblées par les protéines régulant l…

Photo
20240011_0014
Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine
20240011_0013
Open media modal

Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV), après réalisation d’une électrophorèse d’ADN. La lumière UV permet de révéler chaque molécule d’ADN présente dans le gel d'agarose. Ici, la chromatine a été fragmentée par des ultrasons. Dans les cellules, l’ADN est empaqueté grâce à des protéines (notamment les histones), ce qui constitue la chromatine. Les fragments vont ensuite permettre de capturer des protéines spécifiques interagissant avec leurs régions d…

Photo
20240011_0013
Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV)
20240011_0012
Open media modal

Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV), après réalisation d’une électrophorèse d’ADN. La lumière UV permet de révéler chaque molécule d’ADN présente dans le gel d'agarose. Ici, la chromatine a été fragmentée par des ultrasons. Dans les cellules, l’ADN est empaqueté grâce à des protéines (notamment les histones), ce qui constitue la chromatine. Les fragments vont ensuite permettre de capturer des protéines spécifiques interagissant avec leurs régions d…

Photo
20240011_0012
Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV)
20240011_0011
Open media modal

Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV), après réalisation d’une électrophorèse d’ADN. La lumière UV permet de révéler chaque molécule d’ADN présente dans le gel d'agarose. Ici, la chromatine a été fragmentée par des ultrasons. Dans les cellules, l’ADN est empaqueté grâce à des protéines (notamment les histones), ce qui constitue la chromatine. Les fragments vont ensuite permettre de capturer des protéines spécifiques interagissant avec leurs régions d…

Photo
20240011_0011
Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV)
20240011_0009
Open media modal

Utilisation de la microscopie à fluorescence pour l’observation de cellules de mammifères cultivées in vitro. La microscopie à fluorescence permet de caractériser les modifications morphologiques des cellules, notamment de leur cytosquelette, qui est la composante structurale principale des cellules. Les protéines d’actine sont marquées en rouge permettant la visualisation des fibres d’actine, clé de voute du cytosquelette. La lamine qui délimite les noyaux des cellules est marquée en vert et…

Photo
20240011_0009
Utilisation de la microscopie à fluorescence pour l’observation de cellules de mammifères cultivées in vitro
20240011_0008
Open media modal

Préparation d’échantillons de cellules de mammifères cultivées in vitro pour les observer en microscopie à fluorescence. Des lamelles contenant des cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et des fibroblastes humains (cellules principales du tissu conjonctif), sont préparées pour être observées en microscopie à fluorescence. Au cours de cette expérience des protéines et des molécules d’intérêts (ici la lamine, l’actine…

Photo
20240011_0008
Préparation d’échantillons de cellules de mammifères cultivées in vitro pour les observer en microscopie à fluorescence
20240011_0007
Open media modal

Observation de cellules de mammifères cultivées in vitro. Après s’être développés dans des conditions contrôlées, les cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et les fibroblastes humains (cellules principales du tissu conjonctif) sont examinés au microscope. Ce dernier permet de vérifier l’aspect des cellules, notamment leur croissance ou leur mortalité, dans chacune des boîtes de Petri. Un écran relié au microscope…

Photo
20240011_0007
Observation de cellules de mammifères cultivées in vitro au microscope
20240011_0006
Open media modal

Observation de cellules de mammifères cultivées in vitro. Après s’être développés dans des conditions contrôlées, les cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et les fibroblastes humains (cellules principales du tissu conjonctif) sont examinés au microscope. Ce dernier permet de vérifier l’aspect des cellules, notamment leur croissance ou leur mortalité, dans chacune des boîtes de Petri. Un écran relié au microscope…

Photo
20240011_0006
Observation de cellules de mammifères cultivées in vitro au microscope
20240011_0005
Open media modal

Observation de cellules de mammifères cultivées in vitro. Après s’être développés dans des conditions contrôlées, les cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et les fibroblastes humains (cellules principales du tissu conjonctif) sont examinés au microscope. Ce dernier permet de vérifier l’aspect des cellules, notamment leur croissance ou leur mortalité, dans chacune des boîtes de Petri. Un écran relié au microscope…

Photo
20240011_0005
Observation de cellules de mammifères cultivées in vitro au microscope
20240011_0004
Open media modal

Vérification visuelle de la mortalité de cellules de mammifères cultivées in vitro. Après s’être développés dans des conditions contrôlées, les cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et les fibroblastes humains (cellules principales du tissu conjonctif) sont examinés au microscope. Ce dernier permet de vérifier l’aspect des cellules, notamment leur croissance ou leur mortalité, dans chacune des boîtes de Petri. Les…

Photo
20240011_0004
Vérification visuelle de la mortalité de cellules de mammifères cultivées in vitro
20240011_0003
Open media modal

Mise en culture de cellules de mammifères sous conditions contrôlées. Les boîtes de Petri contenant des cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et des fibroblastes humains (cellules principales du tissu conjonctif), ainsi que leur milieu de culture, sont placées dans un incubateur pendant 48h à 37 °C. Cette étape permet aux cellules de croître. Les scientifiques cherchent à mieux comprendre les adaptations et les…

Photo
20240011_0003
Mise en culture de cellules de mammifères sous conditions contrôlées
20240011_0002
Open media modal

Préparation d’un milieu de culture de cellules sous hotte stérile. Les scientifiques travaillent sur des cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et des fibroblastes humains (cellules principales du tissu conjonctif), cultivés in vitro. Des boîtes de Petri contenant un gel aux propriétés élastiques définies sont préparées sous une hotte stérile. Les cellules étudiées sont placées sur ce gel avec du milieu de culture…

Photo
20240011_0002
Préparation d’un milieu de culture de cellules sous hotte stérile

CNRS Images,

Nous mettons en images les recherches scientifiques pour contribuer à une meilleure compréhension du monde, éveiller la curiosité et susciter l'émerveillement de tous.