Vignette LPPI 2023
Open media modal
En 2019, le CNRS a lancé un partenariat avec l’Acfas en déclinant en France le concours photo La preuve par l’image initié en 2010 au Québec. Pour cette cinquième édition CNRS, les acteurs de la recherche ont été invités à proposer leur plus belle image de science. Le pari de ce concours : partir de l’image, qui interpelle et interroge, et non des mots, pour montrer la recherche.
Exposition
EXP100725
La Preuve Par l'Image 2023
20230113_0009
Open media modal

Simulation numérique de l’environnement proche d’un trou noir tournant. Elle permet d’étudier les mécanismes à l’origine du rayonnement énergétique intense produit par cet astre. Les scientifiques pensent que cette libération d’énergie sous forme de jets de matière et antimatière, lancés à la vitesse de la lumière et plus grands qu’une galaxie, est due à la combinaison de la rotation du trou noir et de la présence d’un champ magnétique. Ce phénomène est comparable à ce qui se passe dans un…

Photo
20230113_0009
Simulation numérique de l’environnement proche d’un trou noir tournant
20240007_0001
Open media modal

Capteur infrarouge à base de nanocristaux contenant un résonateur optique. Les nanocristaux sont une nouvelle génération de semiconducteurs de taille nanométrique, dont les propriétés diffèrent drastiquement de celles d’un matériau massif. Les nanomatériaux comme le séléniure de cadmium ont ainsi la capacité de changer de couleur lorsqu’on modifie leur taille. Des scientifiques cherchent à étendre ce concept d’émission de lumière visible à la détection de lumière infrarouge, afin de développer…

Photo
20240007_0001
Capteur infrarouge à base de nanocristaux contenant un résonateur optique
20240007_0002
Open media modal

Ballon contenant des nanocristaux de séléniure de cadmium sous éclairement ultraviolet. Les nanocristaux sont une nouvelle génération de particules de taille nanométrique, capables de conduire l’électricité de manière imparfaite. Leurs propriétés diffèrent drastiquement de celles d’un matériau massif. Il est notamment possible d’ajuster la couleur d'un nanomatériau comme le séléniure de cadmium en ajustant sa taille : plus la particule est petite, plus sa couleur d’émission va vers les faibles…

Photo
20240007_0002
Ballon contenant des nanocristaux de séléniure de cadmium sous éclairement ultraviolet
20240007_0003
Open media modal

Pilulier contenant une solution de nanocristaux de séléniure de cadmium, éclairé par une lampe UV. Les nanocristaux sont une nouvelle génération de particules de taille nanométrique, capables de conduire l’électricité de manière imparfaite. Leurs propriétés diffèrent drastiquement de celles d’un matériau massif. Il est notamment possible d’ajuster la couleur d'un nanomatériau comme le séléniure de cadmium en ajustant sa taille : plus la particule est petite, plus sa couleur d’émission va vers…

Photo
20240007_0003
Pilulier contenant une solution de nanocristaux de séléniure de cadmium, éclairé par une lampe UV
20240007_0004
Open media modal

Tubes de plexiglass recouverts de solutions de nanocristaux de différentes tailles pour ajuster leur couleur, sous éclairement ultraviolet. Les nanocristaux sont une nouvelle génération de particules de taille nanométrique, capables de conduire l’électricité de manière imparfaite. Leurs propriétés diffèrent drastiquement de celles d’un matériau massif. Il est notamment possible d’ajuster la couleur d’un nanomatériau comme le séléniure de cadmium en ajustant sa taille : plus la particule est…

Photo
20240007_0004
Tubes de plexiglass recouverts de solutions de nanocristaux de différentes tailles pour ajuster leur couleur
20240007_0005
Open media modal

Manipulation d'un cryostat afin de caractériser un composant infrarouge. Les nanocristaux sont une nouvelle génération de semiconducteurs de taille nanométrique, dont les propriétés diffèrent drastiquement de celles d’un matériau massif. Les nanomatériaux comme le séléniure de cadmium ont ainsi la capacité de changer de couleur lorsqu’on modifie leur taille. Des scientifiques cherchent à étendre ce concept d’émission de lumière visible à la détection de lumière infrarouge, pour développer des…

Photo
20240007_0005
Manipulation d'un cryostat afin de caractériser un composant infrarouge
20240092_0001
Open media modal

Banc optique pour la microscopie super-résolution (ou "nanoscopie"), comprenant 7 lasers de longueurs d'onde variant de 405 nm à 730 nm, qui doivent rester parfaitement alignés. La microscopie de super-résolution par localisation de molécules uniques (SMLM) repose sur l’utilisation de marqueurs fluorescents bien particuliers. Ces protéines fluorescentes sont dites photoconvertibles, leur fluorescence passe de façon irréversible du vert au rouge après illumination avec de la lumière violette…

Photo
20240092_0001
Banc optique pour la microscopie super-résolution comprenant 7 lasers
20240092_0002
Open media modal

Banc optique pour la microscopie super-résolution (ou "nanoscopie"), comprenant 7 lasers de longueurs d'onde variant de 405 nm à 730 nm, qui doivent rester parfaitement alignés. La microscopie de super-résolution par localisation de molécules uniques (SMLM) repose sur l’utilisation de marqueurs fluorescents bien particuliers. Ces protéines fluorescentes sont dites photoconvertibles, leur fluorescence passe de façon irréversible du vert au rouge après illumination avec de la lumière violette…

Photo
20240092_0002
Banc optique pour la microscopie super-résolution comprenant 7 lasers
20240092_0003
Open media modal

Étude de protéines fluorescentes par microscopie à l’échelle de la molécule unique. Ces protéines dites photoconvertibles émettent une fluorescence verte. Lorsqu'elles sont illuminées par de la lumière violette, autour de 405 nm, elles subissent une photo transformation irréversible et émettent du rouge. L'étude de leur comportement photophysique permet d'optimiser leurs conditions d’illumination, et d'améliorer leurs performances. Pour cela, des échantillons de protéines fluorescentes sont…

Photo
20240092_0003
Étude de protéines fluorescentes par microscopie à l’échelle de la molécule unique
20240092_0004
Open media modal

Contrôle manuel d'un banc optique pour la microscopie super-résolution (ou "nanoscopie"), comprenant 7 lasers de longueurs d'onde variant de 405 nm à 730 nm, qui doivent rester parfaitement alignés. La microscopie de super-résolution par localisation de molécules uniques (SMLM) repose sur l’utilisation de marqueurs fluorescents bien particuliers. Ces protéines fluorescentes sont dites photoconvertibles, leur fluorescence passe de façon irréversible du vert au rouge après illumination avec de la…

Photo
20240092_0004
Contrôle manuel d'un banc optique pour la microscopie super-résolution
20240092_0005
Open media modal

Contrôle manuel d'un banc optique pour la microscopie super-résolution (ou "nanoscopie"), comprenant 7 lasers de longueurs d'onde variant de 405 nm à 730 nm, qui doivent rester parfaitement alignés. La microscopie de super-résolution par localisation de molécules uniques (SMLM) repose sur l’utilisation de marqueurs fluorescents bien particuliers. Ces protéines fluorescentes sont dites photoconvertibles, leur fluorescence passe de façon irréversible du vert au rouge après illumination avec de la…

Photo
20240092_0005
Contrôle manuel d'un banc optique pour la microscopie super-résolution
20240092_0006
Open media modal

Étude de protéines fluorescentes par microscopie à l’échelle de la molécule unique. Ces protéines dites photoconvertibles émettent une fluorescence verte. Lorsqu'elles sont illuminées par de la lumière violette, autour de 405 nm, elles subissent une photo transformation irréversible et émettent du rouge. L'étude de leur comportement photophysique permet d'optimiser leurs conditions d’illumination, et d'améliorer leurs performances. Pour cela, des échantillons de protéines fluorescentes sont…

Photo
20240092_0006
Étude de protéines fluorescentes par microscopie à l’échelle de la molécule unique
20240092_0007
Open media modal

Étude de protéines fluorescentes par microspectrophotométrie. Un spectromètre dédié, nommé "cal(ai)²doscope", a été développé à l’Institut de Biologie Structurale de Grenoble, en collaboration avec la start-up Optic Peter. Il est capable d’enregistrer des spectres d’absorbance et de fluorescence dans la gamme UV-visible sur des échantillons très petits. Cela permet d'étudier le comportement spectroscopique des protéines fluorescentes photoconvertibles soumises à des séquences d'illumination…

Photo
20240092_0007
Étude de protéines fluorescentes par microspectrophotométrie
20240092_0008
Open media modal

Étude de protéines fluorescentes par microspectrophotométrie. Un spectromètre dédié, nommé "cal(ai)²doscope", a été développé à l’Institut de Biologie Structurale de Grenoble, en collaboration avec la start-up Optic Peter. Il est capable d’enregistrer des spectres d’absorbance et de fluorescence dans la gamme UV-visible sur des échantillons très petits. Cela permet d'étudier le comportement spectroscopique des protéines fluorescentes photoconvertibles soumises à des séquences d'illumination…

Photo
20240092_0008
Étude de protéines fluorescentes par microspectrophotométrie
20240092_0009
Open media modal

Étude de protéines fluorescentes par microspectrophotométrie. Un spectromètre dédié, nommé "cal(ai)²doscope", a été développé à l’Institut de Biologie Structurale de Grenoble, en collaboration avec la start-up Optic Peter. Il est capable d’enregistrer des spectres d’absorbance et de fluorescence dans la gamme UV-visible sur des échantillons très petits. Cela permet d'étudier le comportement spectroscopique des protéines fluorescentes photoconvertibles soumises à des séquences d'illumination…

Photo
20240092_0009
Étude de protéines fluorescentes par microspectrophotométrie
20240092_0010
Open media modal

Étude de la dynamique de protéines fluorescentes photoconvertibles par résonance magnétique nucléaire (RMN). La RMN apporte des informations complémentaires à la cristallographie, la spectroscopie UV-visible et l’imagerie de molécules uniques, notamment sur la dynamique et la structure chimique des différents états fluorescents et non fluorescents des protéines fluorescentes photoconvertibles. Ces dernières sont placées en solution dans un tube RMN, et peuvent être soumises à illumination laser…

Photo
20240092_0010
Étude de la dynamique de protéines fluorescentes photoconvertibles par RMN
20240092_0011
Open media modal

Étude de la dynamique de protéines fluorescentes photoconvertibles par résonance magnétique nucléaire (RMN). La RMN apporte des informations complémentaires à la cristallographie, la spectroscopie UV-visible et l’imagerie de molécules uniques, notamment sur la dynamique et la structure chimique des différents états fluorescents et non fluorescents des protéines fluorescentes photoconvertibles. Ces dernières sont placées en solution dans un tube RMN, et peuvent être soumises à illumination laser…

Photo
20240092_0011
Étude de la dynamique de protéines fluorescentes photoconvertibles par RMN
20240092_0012
Open media modal

Étude de la dynamique de protéines fluorescentes photoconvertibles par résonance magnétique nucléaire (RMN). La RMN apporte des informations complémentaires à la cristallographie, la spectroscopie UV-visible et l’imagerie de molécules uniques, notamment sur la dynamique et la structure chimique des différents états fluorescents et non fluorescents des protéines fluorescentes photoconvertibles. Ces dernières sont placées en solution dans un tube RMN, et peuvent être soumises à illumination laser…

Photo
20240092_0012
Étude de la dynamique de protéines fluorescentes photoconvertibles par RMN
20240092_0013
Open media modal

Traitement des données de résonance magnétique nucléaire (RMN). Les méthodes de RMN multidimensionnelle développées par l'Institut de Biologie Structurale de Grenoble sont utiles pour l’étude des protéines fluorescentes photoconvertibles, par exemple pour collecter des données rapidement sous illumination laser, ou pour étudier certains aminoacides particuliers. Suite aux collectes, les données sont analysées et les signatures des protéines fluorescentes peuvent être comparées dans leurs…

Photo
20240092_0013
Traitement des données de résonance magnétique nucléaire (RMN)
20240092_0014
Open media modal

Développement et cristallisation de nouveaux mutants de protéines fluorescentes. L’amélioration des protéines fluorescentes pour la microscopie super-résolution passe par le développement de mutants aux performances accrues. Le choix des mutations à réaliser peut se faire de manière rationnelle, en analysant les résultats de cristallographie et de résonance magnétique nucléaire (RMN). Néanmoins, si certaines propriétés photophysiques sont améliorées comme attendu, d’autres sont souvent…

Photo
20240092_0014
Développement et cristallisation de nouveaux mutants de protéines fluorescentes
20240092_0015
Open media modal

Développement et cristallisation de nouveaux mutants de protéines fluorescentes. L’amélioration des protéines fluorescentes pour la microscopie super-résolution passe par le développement de mutants aux performances accrues. Le choix des mutations à réaliser peut se faire de manière rationnelle, en analysant les résultats de cristallographie et de résonance magnétique nucléaire (RMN). Néanmoins, si certaines propriétés photophysiques sont améliorées comme attendu, d’autres sont souvent…

Photo
20240092_0015
Développement et cristallisation de nouveaux mutants de protéines fluorescentes
20240092_0016
Open media modal

Développement et cristallisation de nouveaux mutants de protéines fluorescentes. L’amélioration des protéines fluorescentes pour la microscopie super-résolution passe par le développement de mutants aux performances accrues. Le choix des mutations à réaliser peut se faire de manière rationnelle, en analysant les résultats de cristallographie et de résonance magnétique nucléaire (RMN). Néanmoins, si certaines propriétés photophysiques sont améliorées comme attendu, d’autres sont souvent…

Photo
20240092_0016
Développement et cristallisation de nouveaux mutants de protéines fluorescentes
20240092_0017
Open media modal

Développement et cristallisation de nouveaux mutants de protéines fluorescentes. L’amélioration des protéines fluorescentes pour la microscopie super-résolution passe par le développement de mutants aux performances accrues. Le choix des mutations à réaliser peut se faire de manière rationnelle, en analysant les résultats de cristallographie et de résonance magnétique nucléaire (RMN). Néanmoins, si certaines propriétés photophysiques sont améliorées comme attendu, d’autres sont souvent…

Photo
20240092_0017
Développement et cristallisation de nouveaux mutants de protéines fluorescentes
20240095_0001
Open media modal

Mesure des raies d'absorption de la molécule de dioxygène (O2), par spectroscopie à cavité optique (CRDS). Cette technique permet d’enregistrer les spectres d’absorption de molécules en phase gazeuse grâce à une cavité optique de haute finesse. Celle-ci est régulée en température, et couplée à une source laser afin de déterminer les paramètres spectroscopiques des raies d’absorption de la molécule à différentes températures et pressions. Ces mesures sont réalisées dans le cadre de la mission…

Photo
20240095_0001
Mesure des raies d'absorption de la molécule de dioxygène (O2), par spectroscopie à cavité optique
20240095_0002
Open media modal

Mesure des raies d'absorption de la molécule de dioxygène (O2), par spectroscopie à cavité optique (CRDS). Cette technique permet d’enregistrer les spectres d’absorption de molécules en phase gazeuse grâce à une cavité optique de haute finesse. Celle-ci est régulée en température, et couplée à une source laser afin de déterminer les paramètres spectroscopiques des raies d’absorption de la molécule à différentes températures et pressions. Ces mesures sont réalisées dans le cadre de la mission…

Photo
20240095_0002
Mesure des raies d'absorption de la molécule de dioxygène (O2), par spectroscopie à cavité optique
20240095_0003
Open media modal

Mesure des raies d'absorption de la molécule de dioxygène (O2), par spectroscopie à cavité optique (CRDS). Cette technique permet d’enregistrer les spectres d’absorption de molécules en phase gazeuse grâce à une cavité optique de haute finesse. Celle-ci est régulée en température, et couplée à une source laser afin de déterminer les paramètres spectroscopiques des raies d’absorption de la molécule à différentes températures et pressions. Ces mesures sont réalisées dans le cadre de la mission…

Photo
20240095_0003
Mesure des raies d'absorption de la molécule de dioxygène (O2), par spectroscopie à cavité optique
20240095_0004
Open media modal

Mesure des raies d'absorption de la molécule de dioxygène (O2), par spectroscopie à cavité optique (CRDS). Cette technique permet d’enregistrer les spectres d’absorption de molécules en phase gazeuse grâce à une cavité optique de haute finesse. Celle-ci est régulée en température, et couplée à une source laser afin de déterminer les paramètres spectroscopiques des raies d’absorption de la molécule à différentes températures et pressions. Ces mesures sont réalisées dans le cadre de la mission…

Photo
20240095_0004
Mesure des raies d'absorption de la molécule de dioxygène (O2), par spectroscopie à cavité optique
20240095_0005
Open media modal

Mesure des raies d’absorption de dihydrogène (H2) par spectroscopie à cavité optique (CRDS). Cette technique permet d’enregistrer les spectres d’absorption de molécules en phase gazeuse grâce à une cavité optique de haute finesse. Celle-ci est régulée en température, et couplée à une source laser afin de déterminer les fréquences absolues de transition de la molécule à différentes températures et pressions. La molécule d'hydrogène (H2) ainsi que ses isotopologues HD et D2) (espèces chimiques…

Photo
20240095_0005
Mesure des raies d’absorption de dihydrogène (H2) par spectroscopie à cavité optique
20240095_0006
Open media modal

Mesure des raies d’absorption de dihydrogène (H2) par spectroscopie à cavité optique (CRDS). Cette technique permet d’enregistrer les spectres d’absorption de molécules en phase gazeuse grâce à une cavité optique de haute finesse. Celle-ci est régulée en température, et couplée à une source laser afin de déterminer les fréquences absolues de transition de la molécule à différentes températures et pressions. La molécule d'hydrogène (H2) ainsi que ses isotopologues HD et D2) (espèces chimiques…

Photo
20240095_0006
Mesure des raies d’absorption de dihydrogène (H2) par spectroscopie à cavité optique
20240095_0007
Open media modal

Peigne de fréquences optiques servant à mesurer la fréquence absolue d’un laser avec une grande exactitude, et ainsi à déterminer l'axe absolu des fréquences des spectres de molécules gazeuses enregistrés par spectroscopie à cavité optique (CRDS). Ce peigne est un système laser qui émet environ un million de raies très fines dans l’infrarouge proche, spectralement équidistantes. Celui-ci est généré par un laser femtoseconde dont le taux de répétition est activement stabilisé à l'aide d’une…

Photo
20240095_0007
Peigne de fréquences optiques servant à mesurer la fréquence absolue d’un laser
20240095_0008
Open media modal

Détection de la note de battement hétérodyne entre un laser continu et l’une des dents d’un peigne de fréquences optiques, pour déterminer l'axe absolu des fréquences des spectres de molécules gazeuses enregistrés par spectroscopie à cavité optique (CRDS). Ce peigne est un système laser qui émet environ un million de raies très fines dans l’infrarouge proche, spectralement équidistantes. Celui-ci est généré par un laser femtoseconde dont le taux de répétition est activement stabilisé à l'aide d…

Photo
20240095_0008
Détection de la note de battement hétérodyne entre un laser et un peigne de fréquences optiques
20240058_0001
Open media modal

Cette vue d’artiste illustre la disparition de l’antimatière qui demeure l’un des plus profonds mystères de la physique. L’antimatière, possède des propriétés inverses à celle de la matière. Ainsi un antiélectron, e+, porte une charge inverse à celle d’un électron, e-. Les lois connues de la physique sont telles, qu’observée dans un miroir qui inverserait ses propriétés, une particule de matière serait indiscernable de son antiparticule. Ainsi, depuis le Big Bang, matière et antimatière…

Photo
20240058_0001
Le neutrino et l’asymétrie matière-antimatière
20240058_0009
Open media modal

La première observation d’un candidat neutrino "taggué" auprès de l’expérience NA62 au CERN a permis de démontrer la faisabilité d’une nouvelle méthode pour la physique des neutrinos. Celle-ci propose de suivre les neutrinos depuis leur production, par les désintégrations de kaons, jusqu’à leur interaction dans un détecteur à neutrino. L’analyse des signaux déposés dans les détecteurs par plus d’une centaine de milliards de désintégrations de kaons vers un neutrino et un muon a permis de mettre…

Photo
20240058_0009
Le premier neutrino taggué de l’histoire
20240058_0010
Open media modal

Les lignes de détection de l’expérience KM3NeT, ici en cours de calibration, permettent de créer de gigantesques détecteurs à neutrino en instrumentant de grands volumes d’eau, plusieurs millions de mètres cubes, au fond des mers ou des lacs profonds. Lorsqu’un neutrino interagit dans l’eau, il produit des particules chargées dans le sillage desquelles un cône de lumière – le rayonnement Tcherenkov – apparait et peut être détecté par les capteurs des lignes de mouillages KM3NeT. Les détecteurs…

Photo
20240058_0010
Détecter les neutrinos au fond des mers
20240058_0011
Open media modal

Les lignes de détection de l’expérience KM3NeT, ici en cours de montage, permettent de créer de gigantesques détecteurs à neutrino en instrumentant de grands volumes d’eau, plusieurs millions de mètres cubes, au fond des mers ou des lacs profonds. Ces lignes sont enroulées sur une structure sphérique qui est déposée sur le fond marin. Un robot vient alors libérer la sphère de son ancre (en jaune) qui en remontant par flottaison déroule la ligne de détection. Lorsqu’un neutrino interagit dans l…

Photo
20240058_0011
Détecter les neutrinos au fond des mers
20240058_0002
Open media modal

Ce dispositif expérimental peut être utilisé pour étudier les neutrinos. Les propriétés de ces particules élémentaires sont encore très mystérieuses et pourraient être à l’origine de la disparition de l’antimatière primordiale. Ces particules sont parmi les plus abondantes de l’Univers. Chaque seconde, cent mille milliards de neutrinos, émis par le soleil, traversent chacun d’entre nous. La probabilité que ces particules interagissent est si faible, qu’au cours de notre vie, moins d’une poignée…

Photo
20240058_0002
Le neutrino, un passe-muraille
20240058_0003
Open media modal

Équations décrivant, le mécanisme de production (à gauche) et d’interaction d’un neutrino (à droite). Les neutrinos ne peuvent être détectés qu’indirectement à partir des produits issus de leur interaction avec la matière. Une fois détectée, l’énergie du neutrino est estimée à partir de celle des particules produites lors de l’interaction. Certaines particules n’étant pas détectables, l'énergie du neutrino est obtenue avec une précision limitée. Pour améliorer cette précision, une autre méthode…

Photo
20240058_0003
Détection d’un neutrino et mesure de ses propriétés
20240058_0004
Open media modal

Ce détecteur à pixels, le GigaTracKer, permet de reconstruire individuellement les trajectoires de plus d’un milliard de particules par seconde. Développée par l’expérience NA62 au CERN, cette technologie a permis de montrer la faisabilité d’une nouvelle méthode de caractérisation des neutrinos. Celle-ci consiste à mesurer les propriétés d’un neutrino à partir de la désintégration qui la produit. Les précisions atteignables par cette technique sont inégalables. Le concept de cette méthode fut…

Photo
20240058_0004
Détecter un milliard de particules par seconde
20240058_0005
Open media modal

Vue détaillée du détecteur à pixels, le GigaTracKer, permet de reconstruire individuellement les trajectoires de plus d’un milliard de particules par seconde. Développée par l’expérience NA62 au CERN, cette technologie a permis de montrer la faisabilité d’une nouvelle méthode de caractérisation des neutrinos. Celle-ci consiste à mesurer les propriétés d’un neutrino partir de la désintégration qui la produit. Les précisions atteignables par cette technique sont inégalables. Le concept de cette…

Photo
20240058_0005
Détecter un milliard de particules par seconde
20240058_0006
Open media modal

Le calorimètre de l’expérience NA62 au CERN, formé par 20 tonnes de Krypton liquide, permet de détecter des neutrinos produits par les désintégrations de kaons en muons et neutrinos. Les autres instruments de l’expérience NA62 permettent de reconstruire ces désintégrations et de les associer aux neutrinos détectés dans le calorimètre au krypton liquide. Grâce à cette association, les propriétés des neutrinos peuvent être estimées avec une précision inégalée ouvrant de nouvelles perspectives…

Photo
20240058_0006
Un calorimètre au krypton liquide pour détecter des neutrinos
20240058_0007
Open media modal

À l’intérieur de cette enceinte de vide se trouve le GigaTracker de l’expérience NA62. Ce détecteur est capable de reconstruire individuellement les trajectoires de plus d’un milliard de particules par seconde. Il permet ainsi de reconstruire précisément les désintégrations d’un faisceau de kaon en muons et neutrinos. Les autres instruments de l’expérience NA62 permettent de détecter ces neutrinos et de les associer individuellement à la désintégration les ayant produits. Grâce à cette…

Photo
20240058_0007
A la poursuite des kaons
20240058_0008
Open media modal

Un faisceau de kaons traverse toute l’expérience NA62 (de droite à gauche) dans un tube à vide, visible au centre de la photo. Lorsqu’un kaon se désintègre il produit un neutrino et un muon qui s’échappent du tube à vide et traversent les détecteurs qui l’entourent. La cuve grise, contient 9 000 litres de krypton liquide qui forment le calorimètre de l’expérience dans lequel les neutrinos peuvent interagir et être détectés. Ces détections sont rarissimes : sur un milliard de neutrinos…

Photo
20240058_0008
Un calorimètre au krypton liquide pour détecter des neutrinos
20240059_0002
Open media modal

Attention image soumise à restrictions nous contacter

Lydéric Bocquet et Bruno Mottet dans les locaux de la start-up Sweetch Energy. Les deux physiciens et leur équipe sont finalistes du Prix de l'Inventeur Européen 2024 dans la catégorie Petites et moyennes entreprises (SMEs) pour leurs travaux sur l'énergie osmotique. Cette énergie libérée lors du mélange de deux eaux ayant des concentrations en sel différentes, est l'une des futures énergies renouvelables pour la transition énergétique. Avec la technologie de conversion de l'énergie osmotique…

Photo
20240059_0002
Lydéric Bocquet et Bruno Mottet dans les locaux de la start-up Sweetch Energy
20240059_0003
Open media modal

Attention image soumise à restrictions nous contacter

Cellule du dispositif de conversion de l'énergie osmotique en électricité de la start-up Sweetch Energy. L'énergie osmotique, libérée lors du mélange de deux eaux ayant des concentrations en sel différentes, est l'une des futures énergies renouvelables pour la transition énergétique. La membrane utilisée dans cette cellule sépare les ions positifs (ions sodium) des ions négatifs (ions chlore) du sel. La séparation des charges positives et négatives produit un courant ionique converti en courant…

Photo
20240059_0003
Cellule du dispositif de conversion de l'énergie osmotique en électricité de Sweetch Energy
20240059_0001
Open media modal

Attention image soumise à restrictions nous contacter

Lydéric Bocquet et Bruno Mottet présentant la cellule du dispositif de conversion de l'énergie osmotique en électricité de la start-up Sweetch Energy. Les deux physiciens et leur équipe sont finalistes du Prix de l'Inventeur Européen 2024 dans la catégorie Petites et moyennes entreprises (SMEs) pour leurs travaux sur l'énergie osmotique. Cette énergie libérée lors du mélange de deux eaux ayant des concentrations en sel différentes, est l'une des futures énergies renouvelables pour la transition…

Photo
20240059_0001
Lydéric Bocquet et Bruno Mottet avec la cellule du dispositif de conversion de l'énergie osmotique en électricité de…
20240062_0002
Open media modal

Chambre anéchoïque du Laboratoire de mécanique et d'acoustique (LMA AMU/Centrale Méditerranée/CNRS) équipée de l'antenne développée dans le cadre du projet RayoVox, portant sur la caractérisation du rayonnement acoustique de la voix humaine et réunissant le LMA et l'Institut d'Alembert (Sorbonne Université/CNRS). L'antenne, montée sur une structure géodésique, permet de capter simultanément les ondes sonores émises par un chanteur dans toutes les directions de l'espace afin d'en étudier la…

Photo
20240062_0002
Pris dans la nasse
20240054_0016
Open media modal

Attention image soumise à restrictions nous contacter

Installation d'une membrane dans une cellule lors du test du prototype de laboratoire du dispositif de dessalement Viro, par la future start-up Ilion Water. Ilion Water, portée par Lucie Ries et Zacharie Pilo, développe une nouvelle génération de solutions de dessalement de l'eau de mer, afin d'augmenter l'efficacité de ce procédé en diminuant son impact environnemental. Contrairement à la technique d'osmose inverse actuelle, qui nécessite des équipements contraignants et des pressions très…

Photo
20240054_0016
Installation d'une membrane de dessalement dans une cellule lors du test du dispositif Viro
20240054_0020
Open media modal

Attention image soumise à restrictions nous contacter

Test du prototype de laboratoire de Viro, le dispositif de dessalement de la future start-up Ilion Water. Le champ électrique émis par un générateur de tension vient pomper l'eau salée dans l'éprouvette de gauche, qui passe à travers une membrane pour récupérer l'eau pure dans celle de droite. La mesure de la conductivité de la solution permet de connaître le taux de rejection, la capacité de la membrane à bloquer le sel. Ilion Water, portée par Lucie Ries et Zacharie Pilo, développe une…

Photo
20240054_0020
Mesure de conductivité lors du test du prototype de laboratoire du dispositif Viro
20240054_0021
Open media modal

Attention image soumise à restrictions nous contacter

Prototype de laboratoire de Viro, le dispositif de dessalement de la future start-up Ilion Water. Le champ électrique émis par un générateur de tension vient pomper l'eau salée dans l'éprouvette de gauche, qui passe à travers une membrane pour récupérer l'eau pure dans celle de droite. Ilion Water, portée par Lucie Ries et Zacharie Pilo, développe une nouvelle génération de solutions de dessalement de l'eau de mer, afin d'augmenter l'efficacité de ce procédé en diminuant son impact…

Photo
20240054_0021
Prototype de laboratoire du dispositif de dessalement Viro

CNRS Images,

Nous mettons en images les recherches scientifiques pour contribuer à une meilleure compréhension du monde, éveiller la curiosité et susciter l'émerveillement de tous.