Open media modal

Only available for non-commercial distribution

Whether we think they intend to annihilate us, replace us in factories or become our slaves (or even our friends!), robots have fuelled our fantasies for centuries... Especially when they look like us. Except that actually we don't come across many of them other than in fiction. So in this episode of #VaSavoir we asked what is ultimately the point of trying to create humanoid robots? And scientifically, what is really hidden behind this seemingly Promethean desire? To gain a better…

Video
7672
Hand to hand with robots - Va Savoir #03
20230093_0004
Open media modal

Le robot humanoïde Neachy. Il est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision chez l’humain. En robotique, la plateforme…

Photo
20230093_0004
Robot humanoïde Neachy utilisé dans le cadre de recherches neurorobotiques
20230093_0003
Open media modal

Œil du robot humanoïde Neachy. Ce robot est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision chez l’humain. En robotique, la…

Photo
20230093_0003
Œil du robot humanoïde Neachy utilisé lors de recherches neurorobotiques
20230093_0010
Open media modal

Le robot humanoïde Neachy saisissant un objet. Sa tête expressive affiche un sourire. Ce robot est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier…

Photo
20230093_0010
Le robot humanoïde Neachy utilisé lors de recherches neurorobotiques
20230093_0013
Open media modal

La main du robot humanoïde Neachy tenant un objet. Il est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision chez l’humain. En…

Photo
20230093_0013
La main du robot humanoïde Neachy utilisé lors de recherches neurorobotiques
20230093_0001
Open media modal

Tête expressive du robot humanoïde Neachy affichant un sourire. Ce robot est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision…

Photo
20230093_0001
Tête expressive du robot humanoïde Neachy utilisé lors de recherches neurorobotiques
20230093_0002
Open media modal

Tête expressive du robot humanoïde Neachy sans expression faciale. Ce robot est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de…

Photo
20230093_0002
Robot humanoïde Neachy utilisé dans le cadre de recherches neurorobotiques
20230093_0009
Open media modal

La main du robot humanoïde Neachy. Il est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision chez l’humain. En robotique, la…

Photo
20230093_0009
La main du robot humanoïde Neachy utilisé lors de recherches neurorobotiques
20230093_0008
Open media modal

Scientifique serrant la main du robot humanoïde Neachy. Il est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision chez l’humain…

Photo
20230093_0008
Interaction avec le robot humanoïde Neachy lors de recherches neurorobotiques
20230093_0005
Open media modal

Limited rights, contact us

Manipulation du robot humanoïde Neachy. Il est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision chez l’humain. En robotique, la…

Photo
20230093_0005
Manipulation du robot humanoïde Neachy utilisé lors de recherches neurorobotiques
20230093_0007
Open media modal

Limited rights, contact us

Contact visuel avec le robot humanoïde Neachy. Il est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision chez l’humain. En…

Photo
20230093_0007
Interaction avec le robot humanoïde Neachy lors de recherches neurorobotiques
20230093_0006
Open media modal

Limited rights, contact us

Manipulation du robot humanoïde Neachy. Il est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision chez l’humain. En robotique, la…

Photo
20230093_0006
Manipulation du robot humanoïde Neachy utilisé lors de recherches neurorobotiques
20230093_0011
Open media modal

Limited rights, contact us

Le robot humanoïde Neachy donnant un objet à un scientifique. Ce robot est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision…

Photo
20230093_0011
Interaction avec le robot humanoïde Neachy lors de recherches neurorobotiques
20230093_0012
Open media modal

Limited rights, contact us

Le robot humanoïde Neachy donnant un objet à un scientifique. Ce robot est utilisé pour étudier les comportements autonomes et sociaux dans un cadre interdisciplinaire entre neuroscience et robotique. Ces recherches neurorobotiques combinent expérimentation et modélisation, et s’intéressent particulièrement aux processus décisionnels. En neuroscience, la plateforme permet de mettre en place des expériences où l’on fait interagir des participants avec Neachy pour étudier la prise de décision…

Photo
20230093_0012
Interaction avec le robot humanoïde Neachy lors de recherches neurorobotiques
20230075_0001
Open media modal

Robot nageur dans un bassin, lors d’une étude des mécanismes propulsif et résistif chez le nageur expert. Son bras robotisé permet de modéliser les mouvements de la nage de manière reproductible et de varier précisément les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV (vélocimétrie par image de particules) est utilisée pour étudier les tourbillons autour…

Photo
20230075_0001
Robot nageur utilisé lors de l'étude des mécanismes propulsif et résistif chez le nageur expert
20230075_0005
Open media modal

Mesure PIV de la vitesse des tourbillons dans l’eau causés par les mouvements du bras robotisé d’un robot nageur, dans le cadre d’une étude des mécanismes propulsif et résistif chez le nageur expert. Le robot permet de modéliser les mouvements de la nage de manière reproductible et de varier les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV (vélocimétrie…

Photo
20230075_0005
Imagerie PIV lors de l'étude des mécanismes propulsif et résistif chez le nageur expert à l'aide d'un robot nageur
20230075_0006
Open media modal

Mesure PIV de la vitesse des tourbillons dans l’eau causés par les mouvements du bras robotisé d’un robot nageur, dans le cadre d’une étude des mécanismes propulsif et résistif chez le nageur expert. Le robot permet de modéliser les mouvements de la nage de manière reproductible et de varier les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV (vélocimétrie…

Photo
20230075_0006
Imagerie PIV lors de l'étude des mécanismes propulsif et résistif chez le nageur expert à l'aide d'un robot nageur
20230075_0008
Open media modal

Bras d’un robot nageur dans un bassin, au milieu des particules en suspension utilisées pour l’imagerie PIV, dans le cadre d’une étude des mécanismes propulsif et résistif chez le nageur expert. Le robot permet de modéliser les mouvements de la nage de manière reproductible et de varier les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV (vélocimétrie par…

Photo
20230075_0008
Imagerie PIV lors de l'étude des mécanismes propulsif et résistif chez le nageur expert à l'aide d'un robot nageur
20230075_0007
Open media modal

Mesure PIV de la vitesse des tourbillons dans l’eau causés par les mouvements du bras robotisé d’un robot nageur, dans le cadre d’une étude des mécanismes propulsif et résistif chez le nageur expert. Le robot permet de modéliser les mouvements de la nage de manière reproductible et de varier les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV (vélocimétrie…

Photo
20230075_0007
Imagerie PIV lors de l'étude des mécanismes propulsif et résistif chez le nageur expert à l'aide d'un robot nageur
20230075_0004
Open media modal

Robot nageur dans un bassin, devant une caméra haute résolution utilisées pour l’imagerie PIV, dans le cadre d’une étude des mécanismes propulsif et résistif chez le nageur expert. Son bras robotisé permet de modéliser les mouvements de la nage de manière reproductible et de varier précisément les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV …

Photo
20230075_0004
Imagerie PIV lors de l'étude des mécanismes propulsif et résistif chez le nageur expert à l'aide d'un robot nageur
20230075_0009
Open media modal

Bras d’un robot nageur dans un bassin, au milieu des particules en suspension utilisées pour l’imagerie PIV, dans le cadre d’une étude des mécanismes propulsif et résistif chez le nageur expert. Le robot permet de modéliser les mouvements de la nage de manière reproductible et de varier les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV (vélocimétrie par…

Photo
20230075_0009
Imagerie PIV lors de l'étude des mécanismes propulsif et résistif chez le nageur expert à l'aide d'un robot nageur
20230075_0010
Open media modal

Robot nageur dans un bassin, au milieu des particules en suspension utilisées pour l’imagerie PIV, dans le cadre d’une étude des mécanismes propulsif et résistif chez le nageur expert. Le robot permet de modéliser les mouvements de la nage de manière reproductible et de varier les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV (vélocimétrie par image de…

Photo
20230075_0010
Imagerie PIV lors de l'étude des mécanismes propulsif et résistif chez le nageur expert à l'aide d'un robot nageur
20230075_0002
Open media modal

Robot nageur dans un bassin, lors d’une étude des mécanismes propulsif et résistif chez le nageur expert. Son bras robotisé permet de modéliser les mouvements de la nage de manière reproductible et de varier précisément les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV (vélocimétrie par image de particules) est utilisée pour étudier les tourbillons autour…

Photo
20230075_0002
Robot nageur utilisé lors de l'étude des mécanismes propulsif et résistif chez le nageur expert
20230075_0003
Open media modal

Robot nageur dans un bassin, devant une caméra haute résolution utilisée pour l’imagerie PIV, dans le cadre d’une étude des mécanismes propulsif et résistif chez le nageur expert. Son bras robotisé permet de modéliser les mouvements de la nage de manière reproductible et de varier précisément les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV (vélocimétrie…

Photo
20230075_0003
Imagerie PIV lors de l'étude des mécanismes propulsif et résistif chez le nageur expert à l'aide d'un robot nageur
20230075_0011
Open media modal

Synchronisation des caméras haute résolution et du laser haute puissance (sur le chariot orange) utilisés pour l’imagerie PIV, dans le cadre d’une étude des mécanismes propulsif et résistif chez le nageur expert. Le robot permet de modéliser les mouvements de la nage de manière reproductible et de varier les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis que l’imagerie tomographique PIV …

Photo
20230075_0011
Poste de contrôle pour une mesure par imagerie PIV lors d'une étude mécanique de la nage
20230075_0012
Open media modal

Gestion du robot nageur utilisé lors d’une étude des mécanismes propulsif et résistif chez le nageur expert. Le scientifique contrôle le moment précis où la caméra haute résolution (au premier plan), utilisée pour l’imagerie PIV, est déclenchée. Le robot permet de modéliser les mouvements de la nage de manière reproductible et de varier les paramètres (vitesse d’avancement, de rotation du bras, angle d’attaque, etc.). Durant la nage, les capteurs du robot réalisent des mesures de force tandis…

Photo
20230075_0012
Poste de contrôle pour une mesure par imagerie PIV lors d'une étude mécanique de la nage
Open media modal

Only available for non-commercial distribution

Portrait de Claudio Pacchierotti, médaille de bronze du CNRS 2022, chercheur en haptique à l'Institut de recherche en informatique et systèmes aléatoires, spécialiste de l'haptique tactile et des interfaces portables Permettre d'interagir physiquement avec un objet virtuel ou distant, tel est l'enjeu des travaux de Claudio Pacchierotti, qui s'intéresse à l'utilisation de l'haptique, science qui explore et exploite le toucher, pour l'interaction avec les systèmes…

Video
7559
Médaille de bronze 2022 : Claudio Pacchierotti, chercheur en haptique
Open media modal

Only available for non-commercial distribution

Portrait de Gerald Dherbomez, médaille de cristal du CNRS 2022, ingénieur de recherche spécialisé dans la robotique au sein du Centre de recherche en informatique, signal et automatique de Lille (CRIStAL). Expert en robotique, Gérald Dherbomez travaille en soutien aux activités de recherche en véhicules intelligents et autonomes. Architecte logiciel, il s'est impliqué dans plusieurs projets d'envergure en mettant notamment en place des démonstrateurs complexes. Il a ainsi coordonné…

Video
7570
Médaille de cristal 2022 : Gérald Dherbomez, ingénieur de recherche en robotique
20220145_0001
Open media modal

Drones et robots fonctionnant en essaim pour réaliser des tâches plus complexes qu’un robot seul : chaque drone est un individu et un relais pour les autres, ils peuvent s’entraider. La formation (triangle, rectangle, ligne) dépend du cas d’usage : pour contourner une montagne, aller dans les sous-sols, dans les canalisations d’eaux usées. La partie logiciel exploite les capacités de chaque robot.

Photo
20220145_0001
Essaim de drones et de robots qui fonctionnent ensemble pour réaliser des tâches complexes
20220145_0002
Open media modal

Drones et robots fonctionnant en essaim pour réaliser des tâches plus complexes qu’un robot seul : chaque drone est un individu et un relais pour les autres, ils peuvent s’entraider. La formation (triangle, rectangle, ligne) dépend du cas d’usage : pour contourner une montagne, aller dans les sous-sols, dans les canalisations d’eaux usées. La partie logiciel exploite les capacités de chaque robot.

Photo
20220145_0002
Essaim de drones et de robots qui fonctionnent ensemble pour réaliser des tâches complexes
20220145_0003
Open media modal

Drones et robots fonctionnant en essaim pour réaliser des tâches plus complexes qu’un robot seul : chaque drone est un individu et un relais pour les autres, ils peuvent s’entraider. La formation (triangle, rectangle, ligne) dépend du cas d’usage : pour contourner une montagne, aller dans les sous-sols, dans les canalisations d’eaux usées. La partie logiciel exploite les capacités de chaque robot.

Photo
20220145_0003
Essaim de drones et de robots qui fonctionnent ensemble pour réaliser des tâches complexes
20220145_0004
Open media modal

Drones et robots fonctionnant en essaim pour réaliser des tâches plus complexes qu’un robot seul : chaque drone est un individu et un relais pour les autres, ils peuvent s’entraider. La formation (triangle, rectangle, ligne) dépend du cas d’usage : pour contourner une montagne, aller dans les sous-sols, dans les canalisations d’eaux usées. La partie logiciel exploite les capacités de chaque robot.

Photo
20220145_0004
Essaim de drones et de robots qui fonctionnent ensemble pour réaliser des tâches complexes
20220058_0006
Open media modal

Test d’un capteur de force actif constitué d’un laser couplé à un microsystème électromécanique (MEMS), utilisé pour mesurer la raideur de cellules biologiques. Il mesure la raideur d’un échantillon en se basant sur la force appliquée sur ce dernier, qui est elle-même reconstruite à partir de la tension électrique ayant permis la régulation de la position de la sonde capteur mesurée avec le laser. L’avantage du laser est d’obtenir une mesure extrêmement précise (de résolution nanométrique) sans…

Photo
20220058_0006
Test d’un capteur de force actif destiné à mesurer la raideur de cellules biologiques
20220058_0007
Open media modal

Mesure de la raideur d'un objet en PDMS (un polymère) lors du test d'un capteur de force actif destiné à mesurer la raideur de cellules biologiques. Ce capteur est de type MEMS (Microsystème électromécanique). Il permet de réaliser des mesures de forces par compensation grâce à une boucle de régulation. La mesure de la position de la sonde du capteur est effectuée avec un laser. Un des avantages d’une mesure active est la possibilité d’adapter l’impédance du capteur par rapport à celle de l…

Photo
20220058_0007
Test d’un capteur de force actif destiné à mesurer la raideur de cellules biologiques
20220058_0008
Open media modal

Objets en PDMS, un polymère utilisé lors du test d’un capteur de force actif capable de mesurer, par un principe de régulation, la raideur de cellules biologiques. Ces échantillons de PDMS ont des raideurs différentes. Le capteur mesure la raideur d’un échantillon en se basant sur la force appliquée sur ce dernier, qui est elle-même reconstruite à partir de la tension électrique ayant permis la régulation de la position de la sonde capteur mesurée avec le laser. L’avantage du laser est d…

Photo
20220058_0008
Test d’un capteur de force actif destiné à mesurer la raideur de cellules biologiques
20220058_0015
Open media modal

Tâche de phototaxie durant une expérience de robotique en essaim. Les robots doivent s’agréger dans la zone lumineuse. En cas de collision, ils sont programmés pour faire face à l’obstacle ou s’aligner. Ces deux règles simples leur permettent de réussir une tâche complexe : ils évitent les murs et les autres robots grâce au comportement d’alignement et, une fois dans la zone lumineuse, ils s'arrêtent en faisant face aux autres robots. Il n’y a donc pas besoin de programmer un comportement d…

Photo
20220058_0015
Tâche de phototaxie durant une expérience de robotique en essaim
20220058_0016
Open media modal

Robots mobiles lors d'une expérience de robotique en essaim. Durant une tâche de phototaxie, ces robots doivent s’agréger dans la zone lumineuse. En cas de collision, ils sont programmés pour faire face à l’obstacle ou s’aligner. Ces deux règles simples leur permettent de réussir une tâche complexe : ils évitent les murs et les autres robots grâce au comportement d’alignement et, une fois dans la zone lumineuse, ils s'arrêtent en faisant face aux autres robots. Il n’y a donc pas besoin de…

Photo
20220058_0016
Tâche de phototaxie durant une expérience de robotique en essaim
20220058_0001
Open media modal

Opérateur déterminant la raideur d’échantillons cachés derrière un rideau, aidé par un robot d’assistance à la chirurgie cœlioscopique. La cœlioscopie permet d’intervenir sur les organes de l’abdomen sans ouvrir la paroi abdominale, en insérant une caméra et des instruments chirurgicaux via de petites incisions. Elle réduit le risque de complications mais nécessite une grande maîtrise technique de la part du chirurgien, qui doit notamment pallier les distorsions haptiques (perte du toucher et…

Photo
20220058_0001
Test d’un robot d’assistance à la chirurgie cœlioscopique
20220058_0002
Open media modal

Opérateur déterminant la raideur d’échantillons cachés derrière un rideau, aidé par un robot d’assistance à la chirurgie cœlioscopique. La cœlioscopie permet d’intervenir sur les organes de l’abdomen sans ouvrir la paroi abdominale, en insérant une caméra et des instruments chirurgicaux via de petites incisions. Elle réduit le risque de complications mais nécessite une grande maîtrise technique de la part du chirurgien, qui doit notamment pallier les distorsions haptiques (perte du toucher et…

Photo
20220058_0002
Test d’un robot d’assistance à la chirurgie cœlioscopique
20220058_0003
Open media modal

Bracelet muni d’un effecteur permettant de retranscrire l'effort appliqué sur les tissus durant une opération de chirurgie cœlioscopique. La cœlioscopie permet d’intervenir sur les organes de l’abdomen sans ouvrir la paroi abdominale, en insérant une caméra et des instruments chirurgicaux via de petites incisions. Elle réduit le risque de complications mais nécessite une grande maîtrise technique de la part du chirurgien, qui doit notamment pallier les distorsions haptiques (perte du toucher et…

Photo
20220058_0003
Bracelet retranscrivant l'effort appliqué sur les tissus durant la cœlioscopie
20220058_0004
Open media modal

Opérateur déterminant la raideur d’échantillons cachés derrière un rideau, aidé par un robot d’assistance à la chirurgie cœlioscopique. La cœlioscopie permet d’intervenir sur les organes de l’abdomen sans ouvrir la paroi abdominale, en insérant une caméra et des instruments chirurgicaux via de petites incisions. Elle réduit le risque de complications mais nécessite une grande maîtrise technique de la part du chirurgien, qui doit notamment pallier les distorsions haptiques (perte du toucher et…

Photo
20220058_0004
Test d’un robot d’assistance à la chirurgie cœlioscopique
20220058_0005
Open media modal

Opérateur déterminant la raideur d’échantillons cachés derrière un rideau, aidé par un robot d’assistance à la chirurgie cœlioscopique. La cœlioscopie permet d’intervenir sur les organes de l’abdomen sans ouvrir la paroi abdominale, en insérant une caméra et des instruments chirurgicaux via de petites incisions. Elle réduit le risque de complications mais nécessite une grande maîtrise technique de la part du chirurgien, qui doit notamment pallier les distorsions haptiques (perte du toucher et…

Photo
20220058_0005
Test d’un robot d’assistance à la chirurgie cœlioscopique
20220058_0017
Open media modal

Simulation du perçage d’un pédicule pour placer une vis avec un robot d’assistance à la chirurgie de la colonne vertébrale. Un bras est muni d’une sonde pédiculaire développée par la société SpineGuard qui interprète la conductivité électrique des tissus durant le perçage. Elle envoie un signal en cas de contact avec le liquide cérébro-spinal (très conducteur) et alerte l’opérateur de l’imminence d’une brèche dans le canal vertébral. L’autre bras muni d’un endoscope offre un retour visuel. A l…

Photo
20220058_0017
Test d'un robot d’assistance à la chirurgie de la colonne vertébrale
20220058_0018
Open media modal

Simulation du perçage d’un pédicule pour placer une vis avec un robot d’assistance à la chirurgie de la colonne vertébrale. Un bras est muni d’une sonde pédiculaire développée par la société SpineGuard qui interprète la conductivité électrique des tissus durant le perçage. Elle envoie un signal en cas de contact avec le liquide cérébro-spinal (très conducteur) et alerte l’opérateur de l’imminence d’une brèche dans le canal vertébral. L’autre bras muni d’un endoscope offre un retour visuel. A l…

Photo
20220058_0018
Test d'un robot d’assistance à la chirurgie de la colonne vertébrale
20220058_0020
Open media modal

Sonde pédiculaire d’un robot de perçage automatisé pour le placement d'implants osseux. Cette sonde développée par la société SpineGuard est équipée d’un capteur DSG (dynamic surgical guidance) qui détecte la conductivité électrique des tissus. Des algorithmes d'interprétation des données en déduisent la nature du tissu et envoient un signal d’alerte si une brèche osseuse, source de complications pour le patient, est imminente. A l’heure actuelle, les robots chirurgicaux semi-autonomes visent…

Photo
20220058_0020
Sonde pédiculaire d’un robot de perçage automatisé pour le placement d'implants osseux
20220058_0021
Open media modal

Sonde pédiculaire d’un robot de perçage automatisé pour le placement d'implants osseux. Cette sonde développée par la société SpineGuard est équipée d’un capteur DSG (dynamic surgical guidance) qui détecte la conductivité électrique des tissus. Des algorithmes d'interprétation des données en déduisent la nature du tissu et envoient un signal d’alerte si une brèche osseuse, source de complications pour le patient, est imminente. A l’heure actuelle, les robots chirurgicaux semi-autonomes visent…

Photo
20220058_0021
Sonde pédiculaire d’un robot de perçage automatisé pour le placement d'implants osseux
20220058_0019
Open media modal

Simulation du perçage d’un pédicule pour placer une vis avec un robot d’assistance à la chirurgie de la colonne vertébrale. Un bras est muni d’une sonde pédiculaire développée par la société SpineGuard qui interprète la conductivité électrique des tissus durant le perçage. Elle envoie un signal en cas de contact avec le liquide cérébro-spinal (très conducteur) et alerte l’opérateur de l’imminence d’une brèche dans le canal vertébral. L’autre bras muni d’un endoscope offre un retour visuel. A l…

Photo
20220058_0019
Test d'un robot d’assistance à la chirurgie de la colonne vertébrale

CNRS Images,

Our work is guided by the way scientists question the world around them and we translate their research into images to help people to understand the world better and to awaken their curiosity and wonderment.