Folder

Gravitational waves, from Einstein's brain to the eyes of LIGO-Virgo

As is often the case, Einstein was right! A hundred years after his prediction, another door has opened onto our universe…

Wiping a compensating optic used by the Advanced Ligo interferometers
Wiping a compensating optic used by the Advanced Ligo interferometers

© Cyril FRÉSILLON / LMA / CNRS Images

View the media

In 2015, a hundred years after Einstein published his theory of general relativity, scientists detected gravitational waves for the first time ever, confirming by empirical methods one of his major predictions. The discovery of these infinitesimal disturbances in space-time opens the way to fresh insight into the workings of our Universe. Above all, this is the result of years of perseverance, and the development of extraordinary instrumentation in order to detect these waves.

Come with us behind the scenes to learn more about this incredible discovery, through documents from the archives and recent documentaries on the LIGO and Virgo wave detectors, together with the Planck mission, which has also helped us to better map out the Universe thanks to extremely high quality images.

Open media modal

The Planck satellite started to observe the universe in August 2009. In 2013, the images collected enabled scientists to extract information about the structure of the universe, focusing their research on polarization in 2014. It is a property attributed to light which is the latest testimony of the interaction between light and matter. The photos made by Planck provide a high quality atlas of the universe showing matter clusters. Scientists explain what the universe is made of, and what is at…

Video
4401
Planck: New results in 2014
Open media modal

Only available for non-commercial distribution

The most reflective mirrors of the world are at the LMA laboratory (Laboratoire des Matériaux Avancés/laboratory of advanced materials) in Lyon. Up to two years is needed to integrate gravitational wave detectors like LIGO or VIGO. As key elements in these detectors, they are among the most accurate optical components ever produced in the world. Each of their processing steps must be conducted under stringent temperature, hygrometry and cleanliness conditions to reach the most perfect end…

Video
6320
World's most Perfect Mirrors (The)
Open media modal

En 2017, la Médaille d'or du CNRS a été décernée à Thibault Damour et Alain Brillet, dont les travaux respectifs ont permis la détection d'ondes gravitationnelles par les détecteurs LIGO le 14 septembre 2015. L'existence de ces infimes ondulations de l'espace-temps, décrites en 1915 par Albert Einstein dans sa Théorie de la relativité générale, n'avait jusqu'alors jamais pu être démontrée de facto. C'est en 1970 qu'Alain Brillet, alors récemment diplômé de l'ESPCI, entre au CNRS comme…

Video
6448
Médaille d'or CNRS 2017 : Alain Brillet
Open media modal

A l'occasion de sa médaille d'or 2017, décernée par le CNRS, Thibault Damour retrace son parcours. Physicien et théoricien, il entre au CNRS en 1977, au sein du département d'astrophysique relativiste et de cosmologie de l'observatoire de Paris. Ses travaux, menés sur les ondes gravitationnelles, ont permis la détection indirecte de ces ondes, dans les années 1980, et de façon directe plus récemment. Le 14 septembre 2015, les détecteurs de la collaboration LIGO-Virgo ont enregistré le passage…

Video
6446
Médaille d'or CNRS 2017 : Thibault Damour
Open media modal

Four scientists, Claude Cohen-Tannoudji (Laboratoire Kastler-Brossel, Paris), Sébastien Balibar (Laboratoire de physique statistique, Paris), Sylvie Vauclair (Laboratoire d'astrophysique de l'observatoire Midi-Pyrénées, Toulouse), and Thibault Damour (Département d'astrophysique relativiste et de cosmologie, Meudon) sum up the state of physics at the start of the 21st century and some of the challenges that face researchers: to connect the infinitely large and the infinitely small, to measure…

Video
948
What kind of physics in the 21st century?
Open media modal

VIRGO, a joint project of eleven French and Italian laboratories, is an experimental project in basic physics whose goal is to detect, study, and observe gravitational wave signals. As these waves propagate they curve space-time, but the modification of distance they create is so tiny that it has been impossible to observe until now. VIRGO responds to this challenge by constructing a giant interferometer three kilometers long. The detection of gravitational wave signals offers a new window…

Video
393
VIRGO at LAPP
Open media modal

La série « La science au box-office » s'inspire des codes des bandes annonces hollywoodiennes pour vous faire partager les plus étonnantes études, découvertes et innovations scientifiques de notre époque. A la suite d'un cataclysme cosmique survenu dans une lointaine galaxie, un signal parcourt l'univers à la vitesse de la Lumière. Sur Terre, des équipes de scientifiques venus du Monde entier unissent leurs efforts pour percer son mystère.

Video
6440
Signal (Le)

CNRS Images,

Our work is guided by the way scientists question the world around them and we translate their research into images to help people to understand the world better and to awaken their curiosity and wonderment.