20240058_0001
Open media modal

Cette vue d’artiste illustre la disparition de l’antimatière qui demeure l’un des plus profonds mystères de la physique. L’antimatière, possède des propriétés inverses à celle de la matière. Ainsi un antiélectron, e+, porte une charge inverse à celle d’un électron, e-. Les lois connues de la physique sont telles, qu’observée dans un miroir qui inverserait ses propriétés, une particule de matière serait indiscernable de son antiparticule. Ainsi, depuis le Big Bang, matière et antimatière…

Photo
20240058_0001
Le neutrino et l’asymétrie matière-antimatière
20240058_0009
Open media modal

La première observation d’un candidat neutrino "taggué" auprès de l’expérience NA62 au CERN a permis de démontrer la faisabilité d’une nouvelle méthode pour la physique des neutrinos. Celle-ci propose de suivre les neutrinos depuis leur production, par les désintégrations de kaons, jusqu’à leur interaction dans un détecteur à neutrino. L’analyse des signaux déposés dans les détecteurs par plus d’une centaine de milliards de désintégrations de kaons vers un neutrino et un muon a permis de mettre…

Photo
20240058_0009
Le premier neutrino taggué de l’histoire
20240058_0010
Open media modal

Les lignes de détection de l’expérience KM3NeT, ici en cours de calibration, permettent de créer de gigantesques détecteurs à neutrino en instrumentant de grands volumes d’eau, plusieurs millions de mètres cubes, au fond des mers ou des lacs profonds. Lorsqu’un neutrino interagit dans l’eau, il produit des particules chargées dans le sillage desquelles un cône de lumière – le rayonnement Tcherenkov – apparait et peut être détecté par les capteurs des lignes de mouillages KM3NeT. Les détecteurs…

Photo
20240058_0010
Détecter les neutrinos au fond des mers
20240058_0011
Open media modal

Les lignes de détection de l’expérience KM3NeT, ici en cours de montage, permettent de créer de gigantesques détecteurs à neutrino en instrumentant de grands volumes d’eau, plusieurs millions de mètres cubes, au fond des mers ou des lacs profonds. Ces lignes sont enroulées sur une structure sphérique qui est déposée sur le fond marin. Un robot vient alors libérer la sphère de son ancre (en jaune) qui en remontant par flottaison déroule la ligne de détection. Lorsqu’un neutrino interagit dans l…

Photo
20240058_0011
Détecter les neutrinos au fond des mers
20240058_0002
Open media modal

Ce dispositif expérimental peut être utilisé pour étudier les neutrinos. Les propriétés de ces particules élémentaires sont encore très mystérieuses et pourraient être à l’origine de la disparition de l’antimatière primordiale. Ces particules sont parmi les plus abondantes de l’Univers. Chaque seconde, cent mille milliards de neutrinos, émis par le soleil, traversent chacun d’entre nous. La probabilité que ces particules interagissent est si faible, qu’au cours de notre vie, moins d’une poignée…

Photo
20240058_0002
Le neutrino, un passe-muraille
20240058_0003
Open media modal

Équations décrivant, le mécanisme de production (à gauche) et d’interaction d’un neutrino (à droite). Les neutrinos ne peuvent être détectés qu’indirectement à partir des produits issus de leur interaction avec la matière. Une fois détectée, l’énergie du neutrino est estimée à partir de celle des particules produites lors de l’interaction. Certaines particules n’étant pas détectables, l'énergie du neutrino est obtenue avec une précision limitée. Pour améliorer cette précision, une autre méthode…

Photo
20240058_0003
Détection d’un neutrino et mesure de ses propriétés
20240058_0004
Open media modal

Ce détecteur à pixels, le GigaTracKer, permet de reconstruire individuellement les trajectoires de plus d’un milliard de particules par seconde. Développée par l’expérience NA62 au CERN, cette technologie a permis de montrer la faisabilité d’une nouvelle méthode de caractérisation des neutrinos. Celle-ci consiste à mesurer les propriétés d’un neutrino à partir de la désintégration qui la produit. Les précisions atteignables par cette technique sont inégalables. Le concept de cette méthode fut…

Photo
20240058_0004
Détecter un milliard de particules par seconde
20240058_0005
Open media modal

Vue détaillée du détecteur à pixels, le GigaTracKer, permet de reconstruire individuellement les trajectoires de plus d’un milliard de particules par seconde. Développée par l’expérience NA62 au CERN, cette technologie a permis de montrer la faisabilité d’une nouvelle méthode de caractérisation des neutrinos. Celle-ci consiste à mesurer les propriétés d’un neutrino partir de la désintégration qui la produit. Les précisions atteignables par cette technique sont inégalables. Le concept de cette…

Photo
20240058_0005
Détecter un milliard de particules par seconde
20240058_0006
Open media modal

Le calorimètre de l’expérience NA62 au CERN, formé par 20 tonnes de Krypton liquide, permet de détecter des neutrinos produits par les désintégrations de kaons en muons et neutrinos. Les autres instruments de l’expérience NA62 permettent de reconstruire ces désintégrations et de les associer aux neutrinos détectés dans le calorimètre au krypton liquide. Grâce à cette association, les propriétés des neutrinos peuvent être estimées avec une précision inégalée ouvrant de nouvelles perspectives…

Photo
20240058_0006
Un calorimètre au krypton liquide pour détecter des neutrinos
20240058_0007
Open media modal

À l’intérieur de cette enceinte de vide se trouve le GigaTracker de l’expérience NA62. Ce détecteur est capable de reconstruire individuellement les trajectoires de plus d’un milliard de particules par seconde. Il permet ainsi de reconstruire précisément les désintégrations d’un faisceau de kaon en muons et neutrinos. Les autres instruments de l’expérience NA62 permettent de détecter ces neutrinos et de les associer individuellement à la désintégration les ayant produits. Grâce à cette…

Photo
20240058_0007
A la poursuite des kaons
20240058_0008
Open media modal

Un faisceau de kaons traverse toute l’expérience NA62 (de droite à gauche) dans un tube à vide, visible au centre de la photo. Lorsqu’un kaon se désintègre il produit un neutrino et un muon qui s’échappent du tube à vide et traversent les détecteurs qui l’entourent. La cuve grise, contient 9 000 litres de krypton liquide qui forment le calorimètre de l’expérience dans lequel les neutrinos peuvent interagir et être détectés. Ces détections sont rarissimes : sur un milliard de neutrinos…

Photo
20240058_0008
Un calorimètre au krypton liquide pour détecter des neutrinos
20240062_0001
Open media modal

Déploiement du noeud 2 de connexion du Laboratoire sous-marin Provence Méditerranée (LSPM). Cette pièce maîtresse du LSPM est en cours de construction. Installée à 2450 m de profondeur au large de Toulon, cette infrastructure sous-marine câblée regroupe des instruments pour étudier les neutrinos et l’environnement marin. Elle est constituée d’une série de nœuds de connexion et de systèmes intelligents qui alimentent plusieurs instruments scientifiques et récupèrent des données en temps réel…

Photo
20240062_0001
Déploiement du noeud 2 de connexion du Laboratoire sous-marin Provence Méditerranée (LSPM)
20230070_0001
Open media modal

Attention image soumise à restrictions nous contacter

Test du trajectographe à muons, recouvert d'une bâche pour le protéger des intempéries, après un an de prise de données sur le site de Vatnselllir, dans le parc national du Snaefellsjökull, en Islande. Grâce à ce détecteur de muons, les scientifiques imagent le Snaefellsjökull, un volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites…

Photo
20230070_0001
Test du trajectographe à muons sur le site de Vatnselllir, parc national du Snaefellsjökull, Islande
20230070_0002
Open media modal

Attention image soumise à restrictions nous contacter

Déplacement du trajectographe à muons partiellement démonté, dans le parc national du Snaefellsjökull, en Islande, par les scientifiques et des rangers du parc. Il est déplacé de Vatnselllir, où il récolte des données depuis un an, vers un site plus proche du sommet du volcan Snaefellsjökull. Le détecteur de muons permet aux scientifiques d'imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur…

Photo
20230070_0002
Déplacement du trajectographe à muons sur le site de Vatnselllir, parc national du Snaefellsjökull, Islande
20230070_0003
Open media modal

Attention image soumise à restrictions nous contacter

Embarquement du trajectographe à muons pour le transporter depuis le site de Vatnselllir, dans le parc national du Snaefellsjökull, en Islande, vers un site plus proche du sommet du volcan Snaefellsjökull. Ce détecteur de muons possède trois plans de détection, dont deux sont au sol, démontés. L’instrument permet aux scientifiques d’imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des…

Photo
20230070_0003
Embarquement du trajectographe à muons pour le transporter au sommet du volcan Snaefellsjökull, Islande
20230070_0004
Open media modal

Attention image soumise à restrictions nous contacter

Acheminement du trajectographe à muons depuis le site de Vatnselllir, dans le parc national du Snaefellsjökull, en Islande, vers un site plus proche du sommet du volcan Snaefellsjökull. Le détecteur de muons permet aux scientifiques d'imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l’atmosphère et capables…

Photo
20230070_0004
Acheminement du trajectographe à muons vers le sommet du volcan Snaefellsjökull, Islande
20230070_0005
Open media modal

Attention image soumise à restrictions nous contacter

Le trajectographe à muons face au sommet du volcan Snaefellsjökull, en Islande. Le détecteur de muons permet aux scientifiques d'imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l’atmosphère et capables de traverser la matière sur des épaisseurs plus ou moins grandes en fonction de la densité des matériaux…

Photo
20230070_0005
Le trajectographe à muons face au sommet du volcan Snaefellsjökull, Islande
20230070_0006
Open media modal

Attention image soumise à restrictions nous contacter

Installation, câblage et tests du trajectographe à muons en position finale, à proximité du sommet du volcan Snaefellsjökull, en Islande. Le détecteur de muons permet aux scientifiques d'imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l’atmosphère et capables de traverser la matière sur des épaisseurs plus…

Photo
20230070_0006
Installation, câblage et tests du trajectographe à muons au sommet du volcan Snaefellsjökull, Islande
20230070_0007
Open media modal

Attention image soumise à restrictions nous contacter

Chargement de la pile à combustible et des batteries qui alimenteront électriquement le trajectographe à muons. Le transport de ce matériel pesant jusqu'au détecteur, déjà installé à proximité du sommet du volcan Snaefellsjökull, en Islande, sera réalisé grâce à un traîneau spécialement aménagé à cet effet. L’instrument permet aux scientifiques d’imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l…

Photo
20230070_0007
Chargement du système d'alimentation du trajectographe à muons sur un traîneau, Snaefellsjökull, Islande
20230070_0008
Open media modal

Attention image soumise à restrictions nous contacter

Chargement du système d'alimentation du trajectographe à muons, sur un traîneau spécialement aménagé. Il sera transporté jusqu’au détecteur, déjà installé à proximité du sommet du volcan Snaefellsjökull, en Islande. L’instrument permet aux scientifiques d’imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l…

Photo
20230070_0008
Chargement du système d'alimentation du trajectographe à muons sur un traîneau, Snaefellsjökull, Islande
20230070_0009
Open media modal

Attention image soumise à restrictions nous contacter

Acheminement du système d'alimentation vers le trajectographe à muons, déjà installé à proximité du sommet du volcan Snaefellsjökull, en Islande. Le détecteur de muons permet aux scientifiques d'imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l’atmosphère et capables de traverser la matière sur des…

Photo
20230070_0009
Acheminement du système d'alimentation du trajectographe à muons en traîneau, Snaefellsjökull, Islande
20230070_0010
Open media modal

Attention image soumise à restrictions nous contacter

Mise en place et protection du système d'alimentation du trajectographe à muons, à proximité du sommet du volcan Snaefellsjökull, en Islande. Le détecteur de muons permet aux scientifiques d'imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l’atmosphère et capables de traverser la matière sur des épaisseurs…

Photo
20230070_0010
Mise en place et protection du système d'alimentation du trajectographe à muons, Snaefellsjökull, Islande
20230070_0012
Open media modal

Attention image soumise à restrictions nous contacter

Le trajectographe à muons face au sommet du volcan Snaefellsjökull, en Islande. Ce détecteur de muons est paré pour la prise continue de données, à l'abri des intempéries grâce à de solides bâches. Il permet aux scientifiques d’imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l’atmosphère et capables de…

Photo
20230070_0012
Le trajectographe à muons face au sommet du volcan Snaefellsjökull, Islande
20230070_0011
Open media modal

Attention image soumise à restrictions nous contacter

Retour à la base après l’installation du trajectographe à muons à proximité du sommet du volcan Snaefellsjökull, en Islande. Le détecteur de muons permet aux scientifiques d'imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l’atmosphère et capables de traverser la matière sur des épaisseurs plus ou moins…

Photo
20230070_0011
Retour à la base après installation du trajectographe à muons sur le volcan Snaefellsjökull, Islande
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Dorothea vom Bruch, Médaille de bronze 2023 du CNRS, chargée de recherche CNRS au Centre de physique des particules de Marseille (CPPM), spécialiste de la physique des particules et du traitement de données en temps réel. Dès son doctorat de physique des particules, décroché à l'université d'Heidelberg (Allemagne) en 2017, Dorothea vom Bruch développe une double expertise d'analyste et d'expérimentatrice. D'un côté elle se spécialise dans la recherche de…

Vidéo
7815
Médaille de bronze 2023 : Dorothea vom Bruch, chercheuse en physique des particules
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait d'Anna Minguzzi, Médaille d'argent 2023 du CNRS, directrice de recherche CNRS au Laboratoire de physique et modélisation des milieux condensés à Grenoble et directrice de la Fédération de recherche QuantAlps. Ancienne élève de l'École normale supérieure de Pise (Italie), Anna Minguzzi y obtient un doctorat en 1999, avant d'être recrutée au CNRS en 2005. Ses travaux théoriques d'une très grande originalité se situent à la frontière entre la physique atomique et la physique de…

Vidéo
7830
Médaille d'argent 2023 : Anna Minguzzi, chercheuse en physique théorique
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Nicolas Roch, Médaille de bronze 2023 du CNRS, chercheur à l'Institut Néel de Grenoble, au sein de l'équipe Circuits électroniques quantiques Alpes – QuantECA, spécialiste des circuits quantiques supraconducteurs. Après un doctorat obtenu à l'Institut Néel en 2010, Nicolas Roch réalise deux séjours post-doctoraux à l'École normale supérieure de Paris puis à Berkeley en Californie. Il est recruté au CNRS en 2013. Le développement de métamatériaux contenant plusieurs milliers…

Vidéo
7832
Médaille de bronze 2023 : Nicolas Roch, chercheur en électronique quantique
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Sylvain Patinet, Médaille de bronze 2023 du CNRS, chargé de recherche CNRS au laboratoire Physique et mécanique des milieux hétérogènes, spécialiste de la modélisation multi-échelles des matériaux amorphes. Mêlant physique, mécanique et science des matériaux, Sylvain Patinet cherche à modéliser la déformation des solides amorphes comme les verres ou les milieux granulaires, sous chargement mécanique. Visant à quantifier les fluctuations locales de propriétés mécaniques…

Vidéo
7847
Médaille de bronze 2023 : Sylvain Patinet, chercheur en mécanique des solides
Open media modal

Film réservé à la consultation

En Islande, l'équipe de muographie de l'Institut des 2 Infinis de Lyon (IP2I - Lyon) installe un détecteur à muons afin d'imager le volcan Snaefellsjökull. Jacques Marteau, physicien des particules lauréat de la médaille de l'innovation du CNRS 2022, présente ce procédé innovant qui permet d'obtenir une image de l'intérieur des structures traversées, comme avec les rayons X en imagerie médicale. La muographie devrait permettre de vérifier l'existence d'un système hydrothermal actif au sein du…

Vidéo
7716
Dans les entrailles du Snaefellsjökull
20220119_0001
Open media modal

Attention image soumise à restrictions nous contacter

Collage des fibres optiques (vertes) au sein des lattes du scintillateur plastique du trajectographe à muons (blanches). Le fonctionnement de ce détecteur à muons s'appuie sur la scintillation : les muons, particules élémentaires produites naturellement dans l’atmosphère, sont détectés par la lumière qu’ils induisent dans les lattes. La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Comme les muons traversent la matière sur des épaisseurs plus ou moins…

Photo
20220119_0001
Collage des fibres optiques du scintillateur plastique du trajectographe à muons
20220119_0009
Open media modal

Attention image soumise à restrictions nous contacter

Chute de Kerlingarfoss et versant nord du volcan Snaefellsjökull, en Islande. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherchent à imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules…

Photo
20220119_0009
Chute de Kerlingarfoss et versant nord du volcan Snaefellsjökull, Islande
20220119_0011
Open media modal

Attention image soumise à restrictions nous contacter

Le trajectographe à muons face au volcan Snaefellsjökull, en Islande. Ce détecteur de muons est constitué de trois plans de détection assemblés sur une structure métallique. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherchent à imager le Snaefellsjökull, un volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une…

Photo
20220119_0011
Le trajectographe à muons face au volcan Snaefellsjökull, Islande
20220119_0013
Open media modal

Attention image soumise à restrictions nous contacter

Le trajectographe à muons face au volcan Snaefellsjökull, en Islande. Ce détecteur de muons est constitué de trois plans de détection assemblés sur une structure métallique et protégés ici par des housses. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherchent à imager le Snaefellsjökull, un volcan immortalisé par Jules Verne dans "Voyage au centre de…

Photo
20220119_0013
Le trajectographe à muons face au volcan Snaefellsjökull, Islande
20220119_0005
Open media modal

Attention image soumise à restrictions nous contacter

Face sud du Snaefellsjökull, en Islande. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherchent à imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l’atmosphère et…

Photo
20220119_0005
Face sud du volcan Snaefellsjökull, Islande
20220119_0006
Open media modal

Attention image soumise à restrictions nous contacter

Face sud du Snaefellsjökull, en Islande. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherchent à imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans l’atmosphère et…

Photo
20220119_0006
Face sud du volcan Snaefellsjökull, Islande
20220119_0025
Open media modal

Attention image soumise à restrictions nous contacter

La montagne Stapafell, dans la péninsule du Snæfellsnes, en Islande. Cette montagne est l’une des cibles possibles du projet Lindenbrock. Dans le cadre de ce projet, Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherchent à imager le Snaefellsjökull, un volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une…

Photo
20220119_0025
Montagne Stapafell, dans la péninsule du Snæfellsnes, en Islande
20220119_0022
Open media modal

Attention image soumise à restrictions nous contacter

Glacier au sommet du volcan Snaefellsjökull, en Islande. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherchent à imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement dans…

Photo
20220119_0022
Glacier sommital du volcan Snaefellsjökull, Islande
20220119_0018
Open media modal

Attention image soumise à restrictions nous contacter

Acheminement du trajectographe à muons vers le volcan Snaefellsjökull, en Islande. Ce détecteur de muons, recouvert d’une bâche pour le protéger des intempéries, est transporté sur le lieu d’une première séquence de mesures. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherchent à imager le Snaefellsjökull, un volcan immortalisé par Jules Verne dans …

Photo
20220119_0018
Acheminement du trajectographe à muons vers le volcan Snaefellsjökull, Islande
20220119_0021
Open media modal

Attention image soumise à restrictions nous contacter

Le trajectographe à muons pointant vers le sommet du volcan Snaefellsjökull qu'il va imager, en Islande. Le détecteur de muons est placé à distance du Snaefellsjökull de manière à visualiser tout le volcan et le ciel, pour effectuer les corrections dynamiques des images. Après cette image test, il sera approché de la cible pour obtenir une image de meilleure résolution. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de…

Photo
20220119_0021
Le trajectographe à muons pointant vers le volcan Snaefellsjökull, Islande
20220119_0002
Open media modal

Attention image soumise à restrictions nous contacter

Vérification du système électronique du trajectographe à muons, avant son expédition en Islande. Avant tout envoi sur le terrain, ce détecteur de muons est testé et calibré à l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon). Le système électronique est démonté et remonté pour tester l’ensemble des contacts, connexions et configurations. La muographie est une technique innovante d’imagerie révélant l’intérieur des structures. Elle utilise les muons, des particules produites naturellement…

Photo
20220119_0002
Vérification du système électronique du trajectographe à muons, avant son envoi en Islande
20220119_0003
Open media modal

Attention image soumise à restrictions nous contacter

Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et Jean-Christophe Ianigro, collaborateur de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) et de Muodim, vérifient le système électronique du trajectographe à muons, avant son expédition en Islande. Avant tout envoi sur le terrain, ce détecteur de muons est testé et calibré à l’IP2I-Lyon. Le système électronique est démonté et remonté pour tester l’ensemble des contacts, connexions…

Photo
20220119_0003
Vérification du système électronique du trajectographe à muons, avant son envoi en Islande
20220119_0004
Open media modal

Attention image soumise à restrictions nous contacter

Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et Jean-Christophe Ianigro, collaborateur de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) et de Muodim, déposent le bardage de plomb permettant de filtrer les particules sur le trajectographe à muons, avant son expédition en Islande. Avant tout envoi sur le terrain, ce détecteur de muons est assemblé, testé et calibré à l’IP2I-Lyon. La muographie est une technique innovante d…

Photo
20220119_0004
Démontage du trajectographe à muons avant son envoi en Islande
20220119_0007
Open media modal

Attention image soumise à restrictions nous contacter

Assemblage des plans de détection du trajectographe à muons, en Islande. Ce détecteur de muons sera ensuite calibré, avant d'être pointé sur le volcan Snaefellsjökull, à l’arrière-plan. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et l'équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherchent à imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie est une…

Photo
20220119_0007
Assemblage du trajectographe à muons pour imager le volcan Snaefellsjökull, Islande
20220119_0008
Open media modal

Attention image soumise à restrictions nous contacter

Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et Jean-Christophe Ianigro, collaborateur de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) et de Muodim, assemblent les plans de détection du trajectographe à muons, en Islande. Ce détecteur de muons sera ensuite calibré, avant d'être pointé sur le volcan Snaefellsjökull, à l’arrière-plan. L’équipe de muographie de l’IP2I-Lyon cherche à imager ce volcan immortalisé par Jules Verne…

Photo
20220119_0008
Assemblage du trajectographe à muons pour imager le volcan Snaefellsjökull, Islande
20220119_0010
Open media modal

Attention image soumise à restrictions nous contacter

Reconnaissance du terrain sur la pente nord du volcan Snaefellsjökull, en Islande. Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et Jean-Christophe Ianigro, collaborateur de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) et de Muodim, se reposent après l’ascension et vérifient les coordonnées GPS du lieu où ils prévoient d’installer le trajectographe à muons (un détecteur de muons). L’équipe de muographie de l’IP2I-Lyon cherche…

Photo
20220119_0010
Reconnaissance du terrain sur le volcan Snaefellsjökull, Islande
20220119_0012
Open media modal

Attention image soumise à restrictions nous contacter

Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, pose des protections sur les trois plans de détection du trajectographe à muons, en Islande. Ce détecteur de muons sera ensuite calibré, avant d'être pointé sur le volcan Snaefellsjökull, à l’arrière-plan. L’équipe de muographie de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) cherche à imager ce volcan immortalisé par Jules Verne dans "Voyage au centre de la Terre". La muographie…

Photo
20220119_0012
Pose de protections sur le trajectographe à muons, devant le volcan Snaefellsjökull, Islande
20220119_0014
Open media modal

Attention image soumise à restrictions nous contacter

Jacques Marteau, lauréat de la médaille de l'innovation du CNRS 2022 à l'origine de la start-up Muodim, et Jean-Christophe Ianigro, collaborateur de l’Institut de physique des 2 infinis de Lyon (IP2I-Lyon) et de Muodim, déplacent le trajectographe à muons sur la base de Malarrif, dans le parc national du Snaefellsjökull, en Islande. Ce détecteur de muons, dont les trois plans de détection sont ici protégés par des housses, sera calibré avant d'être pointé sur le volcan Snaefellsjökull, à l…

Photo
20220119_0014
Le trajectographe à muons face au volcan Snaefellsjökull, base de Malarrif, Islande

CNRS Images,

Nous mettons en images les recherches scientifiques pour contribuer à une meilleure compréhension du monde, éveiller la curiosité et susciter l'émerveillement de tous.