Reportage Photo

Salle pilote et compresseur du laser Apollon

Salle pilote du laser Apollon

20150006_0004
8 médias
20150006_0004
Open media modal

Salle pilote du laser Apollon où a lieu son amplification. Un oscillateur femto-seconde génère les impulsions à l'origine du signal du laser et du faisceau de pompe pour l'amplification OPCPA (Optical parametric chirped-pulse amplification) du pilote. En rouge, "un filtre spatial" maintient la qualité optique du faisceau. Opérationnel en 2018, le laser Apollon atteindra 5 pétawatts et sera alors le plus puissant au monde. Il permettra d'explorer de nouveaux pans de la physique, notamment la…

Photo
20150006_0004
Laser Apollon
20150005_0001
Open media modal

Chercheur au milieu de l'enceinte de compression 10 pétawatts du laser Apollon. Opérationnel en 2018, ce laser atteindra 5 pétawatts. Il permettra d'explorer de nouveaux pans de la physique, notamment la physique relativiste, c'est-à-dire le fonctionnement de la matière lorsque les particules se déplacent à une vitesse proche de celle de la lumière. L'enceinte du compresseur assure le vide à 10-6 millibars autour des optiques du laser qui permettent de compresser l'impulsion et de passer ainsi…

Photo
20150005_0001
Laser Apollon
20150005_0002
Open media modal

Enceinte de compression 10 pétawatts du laser Apollon. Opérationnel en 2018, ce laser atteindra 5 pétawatts. Il permettra d'explorer de nouveaux pans de la physique, notamment la physique relativiste, c'est-à-dire le fonctionnement de la matière lorsque les particules se déplacent à une vitesse proche de celle de la lumière. L'enceinte du compresseur assure le vide à 10-6 millibars autour des optiques du laser qui permettent de compresser l'impulsion et de passer ainsi de 1 nanoseconde à 15…

Photo
20150005_0002
Laser Apollon
20150005_0003
Open media modal

Enceinte de compression 10 pétawatts du laser Apollon. Opérationnel en 2018, ce laser atteindra 5 pétawatts. Il permettra d'explorer de nouveaux pans de la physique, notamment la physique relativiste, c'est-à-dire le fonctionnement de la matière lorsque les particules se déplacent à une vitesse proche de celle de la lumière. L'enceinte du compresseur assure le vide à 10-6 millibars autour des optiques du laser qui permettent de compresser l'impulsion et de passer ainsi de 1 nanoseconde à 15…

Photo
20150005_0003
Laser Apollon
20150005_0004
Open media modal

Enceinte de compression 10 pétawatts du laser Apollon. Opérationnel en 2018, ce laser atteindra 5 pétawatts. Il permettra d'explorer de nouveaux pans de la physique, notamment la physique relativiste, c'est-à-dire le fonctionnement de la matière lorsque les particules se déplacent à une vitesse proche de celle de la lumière. L'enceinte du compresseur assure le vide à 10-6 millibars autour des optiques du laser qui permettent de compresser l'impulsion et de passer ainsi de 1 nanoseconde à 15…

Photo
20150005_0004
Laser Apollon
20150006_0001
Open media modal

Salle pilote du laser Apollon où a lieu son amplification. Cette chambre à vide, refroidie par un cryostat, permet de créer un environnement approprié et contrôlé autour du cristal du premier amplificateur du pilote. Opérationnel en 2018, le laser Apollon atteindra 5 pétawatts. Il permettra d'explorer de nouveaux pans de la physique, notamment la physique relativiste, c'est-à-dire le fonctionnement de la matière lorsque les particules se déplacent à une vitesse proche de celle de la lumière.

Photo
20150006_0001
Laser Apollon
20150006_0002
Open media modal

Salle pilote du laser Apollon où a lieu son amplification. Cette chambre à vide, refroidie par un cryostat, permet de créer un environnement approprié et contrôlé autour du cristal du premier amplificateur du pilote. Opérationnel en 2018, le laser Apollon atteindra 5 pétawatts. Il permettra d'explorer de nouveaux pans de la physique, notamment la physique relativiste, c'est-à-dire le fonctionnement de la matière lorsque les particules se déplacent à une vitesse proche de celle de la lumière.

Photo
20150006_0002
Laser Apollon
20150006_0003
Open media modal

Salle pilote du laser Apollon où a lieu son amplification. Cette chambre à vide, refroidie par un cryostat, permet de créer un environnement approprié et contrôlé autour du cristal du premier amplificateur du pilote. Opérationnel en 2018, le laser Apollon atteindra 5 pétawatts. Il permettra d'explorer de nouveaux pans de la physique, notamment la physique relativiste, c'est-à-dire le fonctionnement de la matière lorsque les particules se déplacent à une vitesse proche de celle de la lumière.

Photo
20150006_0003
Laser Apollon

Thématiques scientifiques

CNRS Images,

Nous mettons en images les recherches scientifiques pour contribuer à une meilleure compréhension du monde, éveiller la curiosité et susciter l'émerveillement de tous.