20230063_0001
Open media modal

Module d'injection de fibres du projet Hirise dans l’instrument Sphere, sur le Très Grand Télescope (VLT) de l'Observatoire européen austral (ESO), au Chili. Sphere permet d’observer en imagerie directe les exoplanètes autour d’étoiles proches de notre système solaire. Les imageurs à haut contraste comme celui-ci détectent les jeunes exoplanètes géantes dans le proche infrarouge, mais la faible résolution spectrale de leurs spectrographes à champ intégral limite leurs capacités à caractériser…

Photo
20230063_0001
Module d'injection de fibres d’Hirise dans l'imageur à haut contraste Sphere, télescope VLT, Chili
20230063_0002
Open media modal

Installation du toron de fibres reliant les instruments Sphere et Crires+ dans le cadre du projet Hirise, sur le Très Grand Télescope (VLT) de l'Observatoire européen austral (ESO), au Chili. Sphere permet d’observer en imagerie directe les exoplanètes autour d’étoiles proches de notre système solaire. Les imageurs à haut contraste comme celui-ci détectent les jeunes exoplanètes géantes dans le proche infrarouge, mais la faible résolution spectrale de leurs spectrographes à champ intégral…

Photo
20230063_0002
Toron de fibres reliant les instruments Sphere et Crires+ dans le cadre d’Hirise, télescope VLT, Chili
20230063_0003
Open media modal

Module d'extraction de fibres du projet Hirise dans le spectrographe Crires+, sur le Très Grand Télescope (VLT) de l'Observatoire européen austral (ESO), au Chili. Sphere, un autre instrument de ce même télescope, permet d’observer en imagerie directe les exoplanètes autour d’étoiles proches de notre système solaire. Les imageurs à haut contraste comme celui-ci détectent les jeunes exoplanètes géantes dans le proche infrarouge, mais la faible résolution spectrale de leurs spectrographes à champ…

Photo
20230063_0003
Module d'extraction de fibres du projet Hirise dans le spectrographe Crires+, télescope VLT, Chili
Open media modal

Film réservé à la consultation

En Islande, l'équipe de muographie de l'Institut des 2 Infinis de Lyon (IP2I - Lyon) installe un détecteur à muons afin d'imager le volcan Snaefellsjökull. Jacques Marteau, physicien des particules lauréat de la médaille de l'innovation du CNRS 2022, présente ce procédé innovant qui permet d'obtenir une image de l'intérieur des structures traversées, comme avec les rayons X en imagerie médicale. La muographie devrait permettre de vérifier l'existence d'un système hydrothermal actif au sein du…

Vidéo
7716
Dans les entrailles du Snaefellsjökull
20220047_0003
Open media modal

Optique parabolique hors d’axe sur un harnais de déformation, produite par le laboratoire LAM pour l’instrument coronographique du télescope spatial Nancy-Grace-Roman développé par la NASA. Cet instrument vise à faire l’image des exoplanètes géantes gazeuses (comme Jupiter) et potentiellement telluriques (composées de roches et de métal, comme la Terre) des systèmes planétaires proches du Système solaire. Ces exoplanètes étant moins lumineuses que leurs étoiles, le coronographe bloque la…

Photo
20220047_0003
Optique parabolique hors d’axe produite par le LAM pour le télescope Nancy-Grace-Roman
20220047_0004
Open media modal

Optique parabolique hors d’axe sur un harnais de déformation, produite par le laboratoire LAM pour l’instrument coronographique du télescope spatial Nancy-Grace-Roman développé par la NASA. Cet instrument vise à faire l’image des exoplanètes géantes gazeuses (comme Jupiter) et potentiellement telluriques (composées de roches et de métal, comme la Terre) des systèmes planétaires proches du Système solaire. Ces exoplanètes étant moins lumineuses que leurs étoiles, le coronographe bloque la…

Photo
20220047_0004
Optique parabolique hors d’axe produite par le LAM pour le télescope Nancy-Grace-Roman
20220047_0002
Open media modal

Optique parabolique hors d’axe sur un harnais de déformation, produite par le laboratoire LAM pour l’instrument coronographique du télescope spatial Nancy-Grace-Roman développé par la NASA. Cet instrument vise à faire l’image des exoplanètes géantes gazeuses (comme Jupiter) et potentiellement telluriques (composées de roches et de métal, comme la Terre) des systèmes planétaires proches du Système solaire. Ces exoplanètes étant moins lumineuses que leurs étoiles, le coronographe bloque la…

Photo
20220047_0002
Optique parabolique hors d’axe produite par le LAM pour le télescope Nancy-Grace-Roman
20220047_0001
Open media modal

L’une des 16 optiques paraboliques hors d’axe produites par le laboratoire LAM pour l’instrument coronographique du télescope spatial Nancy-Grace-Roman développé par la NASA. Cet instrument vise à faire l’image des exoplanètes géantes gazeuses (comme Jupiter) et potentiellement telluriques (composées de roches et de métal, comme la Terre) des systèmes planétaires proches du Système solaire. Ces exoplanètes étant 1 million à 1 milliard de fois moins lumineuses que leurs étoiles, le coronographe…

Photo
20220047_0001
Optique parabolique hors d’axe produite par le LAM pour le télescope Nancy-Grace-Roman
20220047_0005
Open media modal

Optiques paraboliques hors d’axe produites par le laboratoire LAM pour l’instrument coronographique du télescope spatial Nancy-Grace-Roman développé par la NASA. L’une d’elles est montée sur un harnais de déformation. Cet instrument vise à faire l’image des exoplanètes géantes gazeuses (comme Jupiter) et potentiellement telluriques (composées de roches et de métal, comme la Terre) des systèmes planétaires proches du Système solaire. Ces exoplanètes étant moins lumineuses que leurs étoiles, le…

Photo
20220047_0005
Optiques paraboliques hors d’axe produites par le LAM pour le télescope Nancy-Grace-Roman
20220018_0002
Open media modal

Noema (Northern Extended Millimeter Array) est le radiotélescope le plus puissant de l'hémisphère Nord et l'une des plus grandes installations d'Europe pour la recherche astronomique. Installé sur le Plateau de Bure dans les Alpes françaises à 2 550 m d’altitude, il est opéré par l’Institut de radioastronomie millimétrique (IRAM). Noema a atteint sa pleine sensibilité avec la mise en service en 2022 de sa 12e antenne. Ce réseau d'antennes radio de haute précision permettra de réaliser des…

Photo
20220018_0002
L’observatoire Noema, équipé d'un réseau de douze antennes radio
20220018_0003
Open media modal

Noema (Northern Extended Millimeter Array) est le radiotélescope le plus puissant de l'hémisphère Nord et l'une des plus grandes installations d'Europe pour la recherche astronomique. Installé sur le Plateau de Bure dans les Alpes françaises à 2 550 m d’altitude, il est opéré par l’Institut de radioastronomie millimétrique (IRAM). Noema a atteint sa pleine sensibilité avec la mise en service en 2022 de sa 12e antenne. Ce réseau d'antennes radio de haute précision permettra de réaliser des…

Photo
20220018_0003
L’observatoire Noema, équipé d'un réseau de douze antennes radio
20220018_0004
Open media modal

Noema (Northern Extended Millimeter Array) est le radiotélescope le plus puissant de l'hémisphère Nord et l'une des plus grandes installations d'Europe pour la recherche astronomique. Installé sur le Plateau de Bure dans les Alpes françaises à 2 550 m d’altitude, il est opéré par l’Institut de radioastronomie millimétrique (IRAM). Noema a atteint sa pleine sensibilité avec la mise en service en 2022 de sa 12e antenne. Ce réseau d'antennes radio de haute précision permettra de réaliser des…

Photo
20220018_0004
L’observatoire Noema, équipé d'un réseau de douze antennes radio
20220018_0001
Open media modal

Noema (Northern Extended Millimeter Array) est le radiotélescope le plus puissant de l'hémisphère Nord et l'une des plus grandes installations d'Europe pour la recherche astronomique. Installé sur le Plateau de Bure dans les Alpes françaises à 2 550 m d’altitude, il est opéré par l’Institut de radioastronomie millimétrique (IRAM). Noema a atteint sa pleine sensibilité avec la mise en service en 2022 de sa 12e antenne. Ce réseau d'antennes radio de haute précision permettra de réaliser des…

Photo
20220018_0001
L’observatoire Noema, équipé d'un réseau de douze antennes radio
20220122_0007
Open media modal

Comment expliquer que de petites planètes telluriques, comme Mercure ou Ganymède, un satellite naturel de Jupiter, aient un champ magnétique ? Grâce à de la neige de flocons de fer. Chutant depuis la périphérie vers le centre du noyau liquide de ces astres, elle provoquerait des turbulences potentiellement à l’origine d’un champ magnétique. Pour éprouver ce phénomène des intérieurs planétaires, les scientifiques ont modélisé dans une cuve stratifiée en eau salée la neige de fer par des billes…

Photo
20220122_0007
Une neige dans l’antre des planètes
Open media modal

Uniquement disponible pour exploitation non commerciale

C'est un savoir-faire qui a fait la renommée mondiale du Laboratoire d'astrophysique de Marseille : actuellement, on y polit, avec une infinie méticulosité, des petits miroirs de 6 cm. Huit d'entre eux, commandés par la Nasa, seront envoyés en 2027 dans l'espace à bord du Roman Space Telescope, la première mission spatiale conçue pour l'imagerie des exoplanètes. Leur polissage doit être parfait pour capter et renvoyer les lumières de faible intensité des exoplanètes.

Vidéo
7455
Des miroirs infiniment polis
Open media modal

Uniquement disponible pour exploitation non commerciale

Situé à 2 500 mètres d'altitude sur le plateau de Bure, dans les Alpes, l'observatoire international Noema est le radiotélescope le plus puissant de l'hémisphère nord. Grâce aux données récoltées par ses douze antennes pointées dans la même direction, les astronomes peuvent notamment étudier les disques protoplanétaires composés de gaz et de poussières qui précèdent la naissance des étoiles et de leurs planètes.

Vidéo
7536
Naissance des exoplanètes (La)
Open media modal

Uniquement disponible pour exploitation non commerciale

Phénomènes lumineux fascinants, les aurores polaires sont régulièrement visibles sur Terre. Mais existent-elles sur d'autres planètes, comme sur Mars par exemple ? Et si oui, comment les observer ? Venez à la rencontre des scientifiques qui, en traquant des aurores martiennes, ont mis en évidence un autre phénomène encore jamais décrit sur la planète rouge...

Vidéo
7543
Chasseurs d'aurores martiennes
Open media modal

Uniquement disponible pour exploitation non commerciale

Ingénieur en ingénierie logicielle à l'Observatoire des sciences de l'Univers de Grenoble, responsable technique du Service national d'observation Méthodes et outils pour l'interférométrie optique. Laurent Bourgès est entré au CNRS en 2007, à l'Observatoire de Paris, puis a rejoint en 2009 le Centre Jean-Marie Mariotti (JMMC) à Grenoble, au sein duquel ses travaux ont contribué de manière exceptionnelle aux recherches en astronomie et astrophysique utilisant l…

Vidéo
7552
Médaille de cristal 2022 : Laurent Bourgès, ingénieur informatique
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait d'Arthur Vigan, médaille de bronze du CNRS 2021, chercheur en astrophysique au Laboratoire d'astrophysique de Marseille, spécialiste de la détection et l'étude des exoplanètes par imagerie directe et du développement d'instrumentation innovante. " Fin des années 1980, mon père et moi mesurions au sol les huit mètres de diamètre des miroirs primaires du VLT (Le Très Grand Télescope de l'ESO) dont la fabrication débutait tout juste. Trente ans plus tard, mon équipe et…

Vidéo
7599
Médaille de bronze 2021 : Arthur Vigan, chercheur en astrophysique et en instrumentation
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Guilaine Lagache, médaille d'argent du CNRS 2021, astronome au Laboratoire d'astrophysique de Marseille, spécialisée dans l'évolution des galaxies dans l'Univers jeune et la formation d'étoiles dans les grandes structures.  " Du plus loin que je me souvienne, j'ai toujours voulu être astronome. En cet hiver 2021, c'est skis de randonnée aux pieds que je sillonne Saint-Véran, « le pays où le coq picore les étoiles », où il y a plus de trente ans, j'observais des flocons…

Vidéo
7601
Médaille d'argent 2021 : Guilaine Lagache, enseignante-chercheuse en astrophysique
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Marta Volonteri, médaille d'argent du CNRS 2022, directrice de recherche à l'Institut d'astrophysique de Paris (IAP), spécialiste des trous noirs massifs situés au centre de certaines galaxies dont la masse atteint jusqu'à plusieurs milliards de fois celle du Soleil. Avec 197 articles cosignés totalisant plus de 15 000 citations, Marta Volonteri s'est imposée comme une grande spécialiste des trous noirs massifs, qui jouent un rôle primordial dans la formation des…

Vidéo
7591
Médaille d'argent 2022 : Marta Volonteri, astrophysique des trous noirs
20210029_0001
Open media modal

Un des filaments d’hydrogène (en bleu) découvert par MUSE, spectrographe 3D, dans le champ ultra-profond de Hubble. Il est situé dans la constellation du Fourneau, à 11,5 milliards d’années-lumière et s’étend sur plus de 15 millions d’années-lumière. L’image en arrière-plan est celle de Hubble. La structure filamentaire du gaz dans lequel se forment les galaxies, plus communément appelée la toile cosmique, est l’une des grandes prédictions du modèle du big bang et de la formation des galaxies…

Photo
20210029_0001
Filament d’hydrogène découvert par MUSE dans le champ ultra-profond de Hubble
20210029_0002
Open media modal

Simulation cosmologique d’un filament composé de centaines de milliers de petites galaxies. L’image de gauche est celle du rayonnement produit par toutes les galaxies tel qu’il pourrait être observé in situ. L’image de droite montre le filament tel qu’il serait observé par MUSE, le spectrographe 3D installé sur le Very Large Telescope (VLT) à l’Observatoire européen austral (ESO). Même avec un très grand temps d'exposition, l’immense majorité des galaxies ne sont pas détectables…

Photo
20210029_0002
Simulation cosmologique d’un filament composé de centaines de milliers de petites galaxies
20230008_0001
Open media modal

Pas d'utilisation commerciale

Perseverance, l’astromobile (rover) de la NASA, dans le cratère Jezero, sur Mars, où il s’est posé en 2021. Cet ancien lac, qui était rempli d’eau il y a 3,5 milliards d'années, pourrait avoir préservé des traces de forme de vie. Afin de vérifier cette hypothèse, le robot collecte des échantillons de sol qui seront rapportés sur Terre en 2031 pour être soumis à des analyses plus précises. Pour ce faire, il emporte sept instruments scientifiques, parmi lesquels SuperCam qui est chargé de…

Photo
20230008_0001
L'astromobile (rover) Perseverance dans le cratère Jezero, sur Mars
20230008_0002
Open media modal

Pas d'utilisation commerciale

Perseverance, l’astromobile (rover) de la NASA, dans le cratère Jezero, sur Mars, où il s’est posé en 2021. Cet ancien lac, qui était rempli d’eau il y a 3,5 milliards d'années, pourrait avoir préservé des traces de forme de vie. Afin de vérifier cette hypothèse, le robot collecte des échantillons de sol qui seront rapportés sur Terre en 2031 pour être soumis à des analyses plus précises. Pour ce faire, il emporte sept instruments scientifiques, parmi lesquels SuperCam qui est chargé de…

Photo
20230008_0002
L'astromobile (rover) Perseverance dans le cratère Jezero, sur Mars
20230008_0004
Open media modal

Pas d'utilisation commerciale

Tête du mât de Perseverance, l’astromobile (rover) de la NASA, abritant le "mast unit", l’un des trois modules de SuperCam. Installé depuis 2021 dans le cratère Jezero, sur Mars, le robot observe la surface et collecte des échantillons de sol susceptibles de receler des traces de forme de vie passée, qui seront ramenés sur Terre en 2031. Pour ce faire, il emporte sept instruments scientifiques dont SuperCam, qui est chargé de caractériser l’environnement géologique et chimique des échantillons…

Photo
20230008_0004
Tête du mât de l’astromobile (rover) Perseverance
20230008_0005
Open media modal

Pas d'utilisation commerciale

"Mast unit", l’un des trois modules de SuperCam, dans la tête du mât de l’astromobile (rover) Perseverance de la NASA. Installé depuis 2021 dans le cratère Jezero, sur Mars, le robot observe la surface et collecte des échantillons de sol susceptibles de receler des traces de forme de vie passée, qui seront ramenés sur Terre en 2031. Pour ce faire, il emporte sept instruments scientifiques dont SuperCam, qui est chargé de caractériser l’environnement géologique et chimique des échantillons. Il…

Photo
20230008_0005
"Mast unit" de SuperCam dans la tête du mât de l’astromobile (rover) Perseverance
20230008_0006
Open media modal

Pas d'utilisation commerciale

"Body unit", l’un des trois modules de SuperCam, dans l’astromobile (rover) Perseverance de la NASA. Installé depuis 2021 dans le cratère Jezero, sur Mars, le robot observe la surface et collecte des échantillons de sol susceptibles de receler des traces de forme de vie passée, qui seront ramenés sur Terre en 2031. Pour ce faire, il emporte sept instruments scientifiques dont SuperCam, qui est chargé de caractériser l’environnement géologique et chimique des échantillons. Il utilise cinq…

Photo
20230008_0006
"Body unit" de SuperCam dans l’astromobile (rover) Perseverance
20230008_0003
Open media modal

Pas d'utilisation commerciale

Perseverance, l’astromobile (rover) de la NASA, dans le cratère Jezero, sur Mars, où il s’est posé en 2021. Cet ancien lac, qui était rempli d’eau il y a 3,5 milliards d'années, pourrait avoir préservé des traces de forme de vie. Afin de vérifier cette hypothèse, le robot collecte des échantillons de sol qui seront rapportés sur Terre en 2031 pour être soumis à des analyses plus précises. Pour ce faire, il emporte sept instruments scientifiques, parmi lesquels SuperCam qui est chargé de…

Photo
20230008_0003
L'astromobile (rover) Perseverance dans le cratère Jezero, sur Mars
Vignette exposition LPPI 2021
Open media modal
Le CNRS a lancé en 2019 un partenariat avec l’Acfas en déclinant en France le concours photo La preuve par l’image initié en 2010 au Québec. Pour cette troisième édition CNRS, les acteurs de la recherche ont été invités à proposer leur plus belle image de science. Le pari de ce concours : partir de l’image, qui interpelle et interroge, et non des mots, pour montrer la recherche.
Exposition
EXP093742
La Preuve Par l'Image 2021
20210137_0011
Open media modal

Poussières extraterrestres provenant de comètes ou d’astéroïdes, les micrométéorites tombent depuis toujours sur notre planète. Parmi elles, les sphérules, des micrométéorites qui ont totalement ou partiellement fondu à l’entrée atmosphérique. Le diamètre de la sphérule présentée ici est de 170 micromètres. On peut voir à sa surface des cristaux de magnétite, de couleur claire et sous forme d’arborescence (ou dendritique), qui se sont façonnées lors de la solidification de la micrométéorite…

Photo
20210137_0011
Poussière extraterrestre
20210127_0005
Open media modal

Susan Conway, géomorphologue planétaire lauréate de la médaille de bronze du CNRS 2020, trie les images acquises dans la salle "missions spatiales" au sein du Laboratoire de planétologie et géodynamique (LPG). Dans cette salle, des acquisitions d’images de Mars par la caméra CaSSIS (embarquée sur la sonde orbitale Trace Gas Orbiter) sont planifiées. Pour faire cette planification, elle travaille avec les agences spatiales Européenne (ESA) et Américaine (NASA) ainsi qu’avec des ingénieurs et…

Photo
20210127_0005
Susan Conway, médaille de bronze du CNRS 2020, dans la salle "missions spatiales"
20210127_0006
Open media modal

Susan Conway, géomorphologue planétaire lauréate de la médaille de bronze du CNRS 2020, avec Anthony Guimpier et Kelly Pasquon dans le "cave 3D" au sein du Laboratoire de planétologie et géodynamique (LPG). Grâce à quatre vidéoprojecteurs 3D et des lunettes adaptées ils peuvent simuler une balade sur la surface de Mars. L’étudiant en thèse et la post doctorante scrutent une vue aérienne des strates déposées au fond de Melas Chasma, un canyon sur Mars. Ils travaillent avec la chercheuse sur l…

Photo
20210127_0006
Susan Conway, médaille de bronze du CNRS 2020, avec Anthony Guimpier et Kelly Pasquon
20210127_0007
Open media modal

Kelly Pasquon, post doctorante au sein du Laboratoire de planétologie et géodynamique (LPG), se déplace sur la surface martienne dans le "cave 3D". Cette technologie permet une expérience d’immersion grâce à quatre vidéoprojecteurs 3D et des lunettes adaptées. En utilisant une manette de jeu vidéo elle peut survoler des environnements construits avec de réelles images martiennes. Elle travaille avec Susan Conway, géomorphologue planétaire lauréate de la médaille de bronze du CNRS 2020, sur un…

Photo
20210127_0007
Expérience d'immersion sur la surface martienne
20210127_0008
Open media modal

Kelly Pasquon, post doctorante au sein du Laboratoire de planétologie et géodynamique (LPG), se déplace sur la surface martienne dans le "cave 3D". Cette technologie permet une expérience d’immersion grâce à quatre vidéoprojecteurs 3D et des lunettes adaptées. En utilisant une manette de jeu vidéo elle peut survoler des environnements construits avec de réelles images martiennes. Elle travaille avec Susan Conway, géomorphologue planétaire lauréate de la médaille de bronze du CNRS 2020, sur un…

Photo
20210127_0008
Expérience d'immersion sur la surface martienne
20220118_0001
Open media modal

Modélisation des anomalies de température sous la surface de la glace d'azote dont est rempli le bassin de Sputnik Planitia, sur la planète Pluton. La région de Sputnik Planitia porte des marques étonnantes : des polygones plats délimités par des creux étroits qui sont dus à la convection thermique de la glace qui renouvelle la surface en permanence. Une équipe de scientifiques a expliqué la formation de ces structures. Malgré un faible ensoleillement, la glace d’azote est régulièrement…

Photo
20220118_0001
Modélisation des anomalies de température sous la surface de la glace d'azote, sur Pluton
20210078_0006
Open media modal

Sphérule, une micrométéorite fondue de la collection Concordia. Elle a été collectée dans les régions centrales antarctiques, à proximité de la station franco-italienne Concordia (Dôme C). Les micrométéorites sont des poussières interplanétaires provenant de comètes ou d’astéroïdes. Ce sont des particules de quelques dixièmes à centièmes de millimètres qui ont traversé l’atmosphère et atteint la surface de la Terre. Pour collecter et analyser ces micrométéorites, six expéditions ont eu lieu au…

Photo
20210078_0006
Sphérule, une micrométéorite fondue de la collection Concordia
20210078_0007
Open media modal

Sphérule, une micrométéorite fondue de la collection Concordia. Elle a été collectée dans les régions centrales antarctiques, à proximité de la station franco-italienne Concordia (Dôme C). Les micrométéorites sont des poussières interplanétaires provenant de comètes ou d’astéroïdes. Ce sont des particules de quelques dixièmes à centièmes de millimètres qui ont traversé l’atmosphère et atteint la surface de la Terre. Pour collecter et analyser ces micrométéorites, six expéditions ont eu lieu au…

Photo
20210078_0007
Sphérule, une micrométéorite fondue de la collection Concordia
Open media modal

Uniquement disponible pour exploitation non commerciale

Le nouveau véhicule mobile de la NASA 'Perseverance' se posera le 18 février 2021 sur Mars dans le cratère Jazero. Il y a 3,5 milliards d'années, cet ancien lac était rempli d'eau. Ce site pourrait avoir préservé des traces fossiles d'une forme de vie. La mission principale de 'Perseverance' est de collecter des échantillons qui seront rapportés sur Terre en 2031 pour être soumis à des analyses plus précises. Pour se faire, le rover emporte…

Vidéo
7013
Supercam, des yeux et des oreilles sur Mars
Open media modal

Uniquement disponible pour exploitation non commerciale

Par son isolement et ses conditions climatiques extrêmes, l'Antarctique est un territoire hostile mais il est également le lieu d'opportunités uniques pour la recherche et un espace réservé à l'exploitation scientifique depuis le protocole de Madrid signé en 1991. Ce film propose de découvrir le travail de quatre chercheurs parmi les scientifiques de disciplines variées venus mener leur projet de recherche sur le continent Antarctique : étude du comportement des animaux, observation des champs…

Vidéo
7280
Antarctique, laboratoire de glace (L')
Open media modal

Uniquement disponible pour exploitation non commerciale

Instrument d'observation exceptionnel, le nouveau télescope James Webb (JWST) de la NASA devrait révolutionner l'observation spatiale. Il sera lancé le 22 décembre 2021 depuis Kourou, en Guyane. Après un voyage de trente jours, il atteindra le point de Lagrange L2 à 1,5 million de kilomètres de la Terre dans la direction opposée au Soleil. Avec son miroir de plus de six mètres d'envergure, Webb est trois fois plus large que Hubble, dont il est le successeur, et deviendra le plus grand…

Vidéo
7362
MIRI - James Webb Telescope
Open media modal

Uniquement disponible pour exploitation non commerciale

À partir de 2023, au Chili, le télescope de l'Observatoire Rubin photographiera le ciel austral de manière systématique durant dix ans, produisant le relevé LSST. Équipé de la plus grande caméra numérique du monde et d'un système de changeur de filtres robotisé, ce système, robuste et très rapide, véritable prouesse technique, est le fruit d'une collaboration entre cinq laboratoires de l'IN2P3. Pour l'équipe, c'est l'aboutissement d'une aventure…

Vidéo
7532
Cristal collectif 2021 : Système de changeur de filtres pour la caméra LSST
20210040_0001
Open media modal

Télescope Canada-France-Hawaï (CFHT), observatoire astronomique du Maunakea à Hawaï, aux Etats-Unis. Le CFHT est financé par le Canada (CNRC), la France (CNRS) et l'Universite d'Hawaii. Ce télescope fera partie du programme H2020 de l'UE pour améliorer la manière dont les télescopes radio et optiques travaillent ensemble. Grâce à un financement de 15 millions d'euros, le réseau OPTICON-RadioNet PILOT (ORP) a été créé afin d’harmoniser les méthodes et les outils d’observation des instruments…

Photo
20210040_0001
Télescope Canada-France-Hawaï (CFHT), observatoire astronomique du Maunakea à Hawaï
20200089_0002
Open media modal

Nous voici au centre d’un amas de galaxies, dans l’Univers proche, simulé numériquement. Cet amas gigantesque de près de 200 000 années-lumière de diamètre baigne dans de grandes quantités de gaz brûlant. Au cours du temps, une partie de ce gaz finit par se refroidir ; il tombe alors sur un trou noir supermassif, tapis au cœur des galaxies. Alors que l’effondrement de ce gaz condensé devrait conduire à la formation de nouvelles étoiles, paradoxalement, il n’en est rien. Car le monstre cosmique…

Photo
20200089_0002
Le souffle d’un trou noir
20200085_0010
Open media modal

Antennes du réseau NenuFAR (New extension in Nançay upgrading LOFAR) de la station de radioastronomie de Nançay. Ce grand réseau phasé qui comptera 1 932 antennes (10 à 85 MHz) à son achèvement couvre plus de 80 000 m² à Nançay. Il peut fonctionner de façon autonome ou au sein du réseau européen LOFAR (LOw Frequency ARray). NenuFAR permet d'étudier l'évolution de l'Univers quelques millions d'années après le Big Bang, la formation des galaxies et des amas de galaxies, les pulsars, le Soleil,…

Photo
20200085_0010
Antennes du réseau NenuFAR de la station de radioastronomie de Nançay
Open media modal

Uniquement disponible pour exploitation non commerciale

Le premier volet de cette série sur les recherches marquantes de l'année 2020 est consacré aux trous noirs. Nelson Christensen, astrophysicien, nous parle de la découverte du laboratoire ARTEMIS où il travaille sur la détection d'ondes gravitationnelles et l'observation de la fusion de deux trous noirs stellaires en un trou noir intermédiaire. Et Françoise Combes, astrophysicienne et Médaille d'or du CNRS en 2020, explique pourquoi il est essentiel d'étudier les trous noirs de grandes tailles,…

Vidéo
7007
Mystères des trous noirs (Les)
Open media modal

Uniquement disponible pour exploitation non commerciale

Film réservé à la consultation

Retracer l'évolution d'une comète durant son voyage à travers le système solaire : c'est l'ambition de plusieurs scientifiques qui reproduisent en laboratoire les caractéristiques thermiques et lumineuses du cosmos. L'objectif : comprendre d'où viennent les éléments qui ont formé la Terre et traquer les premières traces de la vie.

Vidéo
7008
Comète de laboratoire (La)

CNRS Images,

Nous mettons en images les recherches scientifiques pour contribuer à une meilleure compréhension du monde, éveiller la curiosité et susciter l'émerveillement de tous.