Open media modal

Only available for non-commercial distribution

Sur notre planète, la rencontre entre l'eau douce et l'eau salée de la mer produit depuis toujours un phénomène mystérieux : l'osmose. Cette source d'énergie étonnante pourrait révolutionner notre manière de produire de l'électricité, grâce à la découverte d'un matériau innovant, trouvé par le physicien Lydéric Bocquet et produit par la start-up rennaise Sweetch Energy.

Video
8013
Osmotique : l'énergie bleue du futur ?
20230091_0001
Open media modal

Déplacement de panneaux photovoltaïques usagés pour les mettre sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières…

Photo
20230091_0001
Déplacement de panneaux photovoltaïques usagés pour les mettre sur un rack
20230091_0002
Open media modal

Déplacement de panneaux photovoltaïques usagés pour les mettre sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières…

Photo
20230091_0002
Déplacement de panneaux photovoltaïques usagés pour les mettre sur un rack
20230091_0003
Open media modal

Panneau photovoltaïque usagé avant son recyclage dans l'usine ROSI Alpes. Ce panneau sera placé avec d'autres panneaux photovoltaïques usagés sur un rack pour les passer dans un four. La cuisson permet de faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes…

Photo
20230091_0003
Panneau photovoltaïque usagé avant son recyclage
20230091_0004
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0004
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0005
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0005
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0006
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0006
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0007
Open media modal

Panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l’industrie…

Photo
20230091_0007
Panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes
20230091_0008
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0008
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0009
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0009
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0010
Open media modal

Panneaux photovoltaïques déplacés après un passage au four dans l'usine ROSI Alpes. La cuisson permet de faire fondre son enveloppe plastique et ainsi de séparer les éléments qui le constituent. Ces derniers pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l’industrie photovoltaïque. Ces technologies…

Photo
20230091_0010
Panneaux photovoltaïques déplacés après un passage au four dans l'usine ROSI Alpes
20230091_0011
Open media modal

Panneau photovoltaïque après un passage au four dans l'usine ROSI Alpes. La cuisson permet de faire fondre son enveloppe plastique et ainsi de séparer les éléments qui le constituent. Ces derniers pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l’industrie photovoltaïque. Ces technologies permettent…

Photo
20230091_0011
Panneau photovoltaïque après un passage au four
20230091_0012
Open media modal

Éléments dissociés, extraits d'un ancien panneau photovoltaïque usagé, dans l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération de ses matériaux. Ces derniers passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Chaque élément pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l'industrie chimique ou des batteries. Ce processus est mis en…

Photo
20230091_0012
Eléments dissociés, extraits d'un ancien panneau photovoltaïque usagé
20230091_0013
Open media modal

Éléments dissociés, extraits d'un ancien panneau photovoltaïque usagé, dans l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération de ses matériaux. Ces derniers passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Chaque élément pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l'industrie chimique ou des batteries. Ce processus est mis en…

Photo
20230091_0013
Eléments dissociés, extraits d'un ancien panneau photovoltaïque usagé
20230091_0014
Open media modal

Récupération du silicium pur, extrait d'un ancien panneau photovoltaïque usagé, avant son traitement chimique à l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération des matériaux qui le composent. Ces derniers passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Chaque élément pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l'industrie…

Photo
20230091_0014
Récupération du silicium pur extrait d'un ancien panneau photovoltaïque usagé
20230091_0015
Open media modal

Récupération du silicium pur, extrait d'un ancien panneau photovoltaïque usagé, avant son traitement chimique à l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération des matériaux qui le composent. Ces derniers passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Chaque élément pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l'industrie…

Photo
20230091_0015
Récupération du silicium pur extrait d'un ancien panneau photovoltaïque usagé
20230091_0017
Open media modal

Le Wet-bench, machine robotisée permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés à l'usine ROSI Alpes. Après avoir séparé et trié les éléments composant les panneaux solaires grâce à des procédés thermiques, le silicium est récupéré et traité dans un bain de chimie douce peu polluante pour assurer sa dissociation avec les autres métaux. Une grande majorité des éléments récupérés pourra ensuite être traité et réutilisé dans la production photovoltaïque…

Photo
20230091_0017
Le Wet-bench, machine permettant le traitement chimique du silicium issu de panneaux photovoltaïques usagés
20230091_0018
Open media modal

Composants métalliques extraits d'un ancien panneau photovoltaïque usagé, dans l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération des matériaux qui le constituent. Ces composants passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Ici, les éléments métalliques, comme l'argent, ont été récupérés. Chaque élément pourra ensuite être traité et réutilisé dans les modèles de…

Photo
20230091_0018
Composants métalliques extraits d'un ancien panneau photovoltaïque usagé
20230091_0019
Open media modal

Machine robotisée permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés à l'usine ROSI Alpes. Après avoir séparé et trié les éléments composant les panneaux solaires grâce à des procédés thermiques, le silicium est récupéré et traité dans un bain de chimie douce peu polluante pour assurer sa dissociation avec les autres métaux. Une grande majorité des éléments récupérés pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l…

Photo
20230091_0019
Machine permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés
20230091_0020
Open media modal

Machine robotisée permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés à l'usine ROSI Alpes. Après avoir séparé et trié les éléments composant les panneaux solaires grâce à des procédés thermiques, le silicium est récupéré et traité dans un bain de chimie douce peu polluante pour assurer sa dissociation avec les autres métaux. Une grande majorité des éléments récupérés pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l…

Photo
20230091_0020
Machine permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés
20230091_0021
Open media modal

Machine robotisée permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés à l'usine ROSI Alpes. Après avoir séparé et trié les éléments composant les panneaux solaires grâce à des procédés thermiques, le silicium est récupéré et traité dans un bain de chimie douce peu polluante pour assurer sa dissociation avec les autres métaux. Une grande majorité des éléments récupérés pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l…

Photo
20230091_0021
Machine permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés
20230091_0022
Open media modal

Usine ROSI Alpes à Saint-Honoré, dans les Alpes. Inaugurée en juin 2023, cette usine est la première au monde à recycler et revaloriser les matières premières de l’industrie photovoltaïque. À cette date, la méthode de recyclage la plus courante est le broyage des panneaux solaires, entraînant la perte et la dégradation des matériaux les composant. Pourtant, leur fabrication nécessite des métaux critiques, c'est-à-dire indispensables dans le développement des technologies mais menacés de pénurie…

Photo
20230091_0022
Usine ROSI Alpes à Saint-Honoré, près de Grenoble, dans les Alpes
20230091_0023
Open media modal

Usine ROSI Alpes à Saint-Honoré, dans les Alpes. Inaugurée en juin 2023, cette usine est la première au monde à recycler et revaloriser les matières premières de l’industrie photovoltaïque. À cette date, la méthode de recyclage la plus courante est le broyage des panneaux solaires, entraînant la perte et la dégradation des matériaux les composant. Pourtant, leur fabrication nécessite des métaux critiques, c'est-à-dire indispensables dans le développement des technologies mais menacés de pénurie…

Photo
20230091_0023
Usine ROSI Alpes à Saint-Honoré, près de Grenoble, dans les Alpes
20230049_0006
Open media modal

Transistor à effet de camp (FET) basé sur des hétérostructures Van der Waals de matériaux bidimensionnels, vu en microscopie. Ce composant pourrait représenter une solution durable et fiable pour la récupération d'énergie en microélectronique. La nanostructuration sur les plaques de graphène (en magenta) améliore considérablement l'efficacité de la conversion d'énergie par effet thermoélectrique de la structure. Cette image a participé au prix de l'image Art & Science C'Nano 2023, dans la…

Photo
20230049_0006
Les minces et les dodus dans la ville de FET : naviguer dans le labyrinthe nanomesh pour un avenir plus vert
Open media modal

Could it be that water contains an almost inexhaustible source of energy, and above all, that it is within everyone's reach? And what if hydrogen would redefine the contours of our future? Faced with global climate change, the quantities of CO2 from industry and transportation that are released into the atmosphere are widely blamed. In order for humanity and the planet to imagine a viable future by 2100, it is urgent to find a sustainable alternative to our fossil fuels. And in this quest for…

Video
7634
Hydrogen The green revolution?
Open media modal

Only available for non-commercial distribution

Ce nouvel épisode d'Un zeste pour la planète nous parle d'éoliennes... Mais surtout d'une machine extraordinaire, qui permet de simuler la rotation de la Terre et ses écoulements atmosphériques pour réaliser des expériences inédites. Un instrument précieux lorsqu'il s'agit d'implanter au mieux des parcs éoliens en haute mer, là où ils sont soumis à diverses forces terrestres...

Video
7545
Machine à simuler l'atmosphère (La)
20220116_0101
Open media modal

Étape de rinçage de substrats de verre couverts de molybdène après électrodépôt de couches minces de cuivre (Cu), indium (In) et gallium (Ga). Cette technique est basée sur la réduction de cations métalliques en solution. Ici, les cuves sont optimisées pour le dépôt d’alliages de type CIG (cuivre-indium-gallium), précurseur du matériau absorbeur de cellules solaires de type CIGS (cuivre-indium-gallium-soufre-sélénium), à l’échelle pré-industrielle.

Photo
20220116_0101
Rinçage de substrats verre couverts de molybdène après électrodépôt de couches minces de Cu, In et Ga
20220116_0102
Open media modal

Étape de rinçage de substrats de verre couverts de molybdène après électrodépôt de couches minces de cuivre (Cu), indium (In) et gallium (Ga). Cette technique est basée sur la réduction de cations métalliques en solution. Ici, les cuves sont optimisées pour le dépôt d’alliages de type CIG (cuivre-indium-gallium), précurseur du matériau absorbeur de cellules solaires de type CIGS (cuivre-indium-gallium-soufre-sélénium), à l’échelle pré-industrielle.

Photo
20220116_0102
Rinçage de substrats verre couverts de molybdène après électrodépôt de couches minces de Cu, In et Ga
20220116_0103
Open media modal

Chargement d'échantillons dans un bâti de dépôt de couches minces par pulvérisation cathodique. Ce dépôt physique est contrôlé par cinq paramètres essentiels : la pression dans la chambre, la puissance nominale appliquée à la cible, la distance interélectrode (cible-substrat) et la température du substrat. Il permet notamment le dépôt de matériaux transparents et conducteurs ainsi que des métaux, pouvant être utilisés comme électrodes de cellules solaires.

Photo
20220116_0103
Chargement d'échantillons dans un bâti de dépôt de couches minces par pulvérisation cathodique
20220116_0104
Open media modal

Chargement d'échantillons dans un bâti de dépôt de couches minces par pulvérisation cathodique. Ce dépôt physique est contrôlé par cinq paramètres essentiels : la pression dans la chambre, la puissance nominale appliquée à la cible, la distance interélectrode (cible-substrat) et la température du substrat. Il permet notamment le dépôt de matériaux transparents et conducteurs ainsi que des métaux, pouvant être utilisés comme électrodes de cellules solaires.

Photo
20220116_0104
Chargement d'échantillons dans un bâti de dépôt de couches minces par pulvérisation cathodique
20220116_0105
Open media modal

Chargement d'échantillons dans un bâti de dépôt de couches minces par pulvérisation cathodique. Ce dépôt physique est contrôlé par cinq paramètres essentiels : la pression dans la chambre, la puissance nominale appliquée à la cible, la distance interélectrode (cible-substrat) et la température du substrat. Il permet notamment le dépôt de matériaux transparents et conducteurs ainsi que des métaux, pouvant être utilisés comme électrodes de cellules solaires.

Photo
20220116_0105
Chargement d'échantillons dans un bâti de dépôt de couches minces par pulvérisation cathodique
20220116_0106
Open media modal

Sortie d'un échantillon après dépôt par pulvérisation cathodique d’une couche de molybdène sur un substrat de verre. Ce dépôt physique est contrôlé par cinq paramètres essentiels : la pression dans la chambre, la puissance nominale appliquée à la cible, la distance interélectrode (cible-substrat) et la température du substrat. Il permet notamment le dépôt de matériaux transparents et conducteurs ainsi que des métaux, pouvant être utilisés comme électrodes de cellules solaires.

Photo
20220116_0106
Échantillon après dépôt par pulvérisation cathodique d’une couche de molybdène sur un substrat de verre
20220116_0107
Open media modal

Sortie d'un échantillon après dépôt par pulvérisation cathodique d’une couche de molybdène sur un substrat de verre. Ce dépôt physique est contrôlé par cinq paramètres essentiels : la pression dans la chambre, la puissance nominale appliquée à la cible, la distance interélectrode (cible-substrat) et la température du substrat. Il permet notamment le dépôt de matériaux transparents et conducteurs ainsi que des métaux, pouvant être utilisés comme électrodes de cellules solaires.

Photo
20220116_0107
Échantillon après dépôt par pulvérisation cathodique d’une couche de molybdène sur un substrat de verre
20220116_0001
Open media modal

Cellules photovoltaïques en CIGS (matériau à base de cuivre, d'indium, de gallium, de sélénium et de soufre) sous un simulateur solaire, qui permet la mesure du rendement de conversion de l'énergie lumineuse en énergie électrique d’un dispositif photovoltaïque. Cette plaque contient 162 cellules photovoltaïques à base de couches minces de Cu(In,Ga)(S,Se)2 (CIGS). Toutes ces cellules sont caractérisées par mesure courant-tension (I-V) à une température contrôlée de 25 °C et sous une illumination…

Photo
20220116_0001
Cellules photovoltaïques en CIGS sous un simulateur solaire
20220116_0002
Open media modal

Cellules photovoltaïques en CIGS (matériau à base de cuivre, d'indium, de gallium, de sélénium et de soufre) sous un simulateur solaire, qui permet la mesure du rendement de conversion de l'énergie lumineuse en énergie électrique d’un dispositif photovoltaïque. Cette plaque contient 162 cellules photovoltaïques à base de couches minces de Cu(In,Ga)(S,Se)2 (CIGS). Toutes ces cellules sont caractérisées par mesure courant-tension (I-V) à une température contrôlée de 25 °C et sous une illumination…

Photo
20220116_0002
Cellules photovoltaïques en CIGS sous un simulateur solaire
20220116_0003
Open media modal

Cellules photovoltaïques en CIGS (matériau à base de cuivre, d'indium, de gallium, de sélénium et de soufre) sous un simulateur solaire, qui permet la mesure du rendement de conversion de l'énergie lumineuse en énergie électrique d’un dispositif photovoltaïque. Cette plaque contient 162 cellules photovoltaïques à base de couches minces de Cu(In,Ga)(S,Se)2 (CIGS). Toutes ces cellules sont caractérisées par mesure courant-tension (I-V) à une température contrôlée de 25 °C et sous une illumination…

Photo
20220116_0003
Cellules photovoltaïques en CIGS sous un simulateur solaire
20220116_0004
Open media modal

Cellules photovoltaïques en CIGS (matériau à base de cuivre, d'indium, de gallium, de sélénium et de soufre) sous un simulateur solaire, qui permet la mesure du rendement de conversion de l'énergie lumineuse en énergie électrique d’un dispositif photovoltaïque. Cette plaque contient 162 cellules photovoltaïques à base de couches minces de Cu(In,Ga)(S,Se)2 (CIGS). Toutes ces cellules sont caractérisées par mesure courant-tension (I-V) à une température contrôlée de 25 °C et sous une illumination…

Photo
20220116_0004
Cellules photovoltaïques en CIGS sous un simulateur solaire
20220116_0005
Open media modal

Cellules photovoltaïques en CIGS (matériau à base de cuivre, d'indium, de gallium, de sélénium et de soufre) sous un simulateur solaire, qui permet la mesure du rendement de conversion de l'énergie lumineuse en énergie électrique d’un dispositif photovoltaïque. Cette plaque contient 162 cellules photovoltaïques à base de couches minces de Cu(In,Ga)(S,Se)2 (CIGS). Toutes ces cellules sont caractérisées par mesure courant-tension (I-V) à une température contrôlée de 25 °C et sous une illumination…

Photo
20220116_0005
Cellules photovoltaïques en CIGS sous un simulateur solaire
20220116_0006
Open media modal

Cellules photovoltaïques en CIGS (matériau à base de cuivre, d'indium, de gallium, de sélénium et de soufre) sous un simulateur solaire, qui permet la mesure du rendement de conversion de l'énergie lumineuse en énergie électrique d’un dispositif photovoltaïque. Cette plaque contient 162 cellules photovoltaïques à base de couches minces de Cu(In,Ga)(S,Se)2 (CIGS). Toutes ces cellules sont caractérisées par mesure courant-tension (I-V) à une température contrôlée de 25 °C et sous une illumination…

Photo
20220116_0006
Cellules photovoltaïques en CIGS sous un simulateur solaire
20220116_0007
Open media modal

Cellules photovoltaïques à base de cuivre, d'indium, de gallium, de sélénium et de soufre (Cu(In,Ga)(S,Se)2), aussi appelé CIGS, déposées sur 15 X 15 cm2. Cette plaque photovoltaïque à base de couches minces de CIGS est constituée de 162 cellules solaires déposées sur un substrat de verre. Ce grand nombre de cellules permet une approche statistique de la mesure des performances photovoltaïques. Ces cellules peuvent par exemple trouver des applications dans les systèmes flexibles ou dans des…

Photo
20220116_0007
Cellules photovoltaïques à base de Cu(In,Ga)S2 déposées sur 15X15cm2
20230049_0007
Open media modal

Nanowagons connectés en série sur un guide d’onde RF en or, sur un dispositif ultrabasse consommation d’électronique de spin, exploitant de nouveaux matériaux bidimensionnels comme le graphène. Dans chacun d’eux, un matériau ferromagnétique, le cobalt, est utilisé pour pomper un courant de spin pur dans une fine couche de graphène, où il va se propager. Il est ensuite converti en courant de charge via l’Effet Hall de Spin Inverse dans un barreau de palladium. Le courant de charge de tous les…

Photo
20230049_0007
Nanowagons circulant sur un chemin de fer pour le transport de spin
20220116_0053
Open media modal

Chargement d'échantillons dans un bâti de dépôt de couches minces par ALD (Atomic Layer Deposition). Basée sur des réactions chimiques de surface, cette méthode permet de synthétiser des couches minces conformes, avec un contrôle à l’échelle atomique de leur composition et de leur épaisseur. Ainsi, cette technique est particulièrement bien adaptée à l’ingénierie d’interfaces et participe à la fabrication de cellules solaires à très haut rendement de conversion.

Photo
20220116_0053
Chargement d'échantillons dans un bâti de dépôt de couches minces par ALD (Atomic Layer Deposition)
20220116_0054
Open media modal

Chargement d'échantillons dans un bâti de dépôt de couches minces par ALD (Atomic Layer Deposition). Basée sur des réactions chimiques de surface, cette méthode permet de synthétiser des couches minces conformes, avec un contrôle à l’échelle atomique de leur composition et de leur épaisseur. Ainsi, cette technique est particulièrement bien adaptée à l’ingénierie d’interfaces et participe à la fabrication de cellules solaires à très haut rendement de conversion.

Photo
20220116_0054
Chargement d'échantillons dans un bâti de dépôt de couches minces par ALD (Atomic Layer Deposition)
20220116_0055
Open media modal

Chargement d'échantillons dans un bâti de dépôt de couches minces par ALD (Atomic Layer Deposition). Basée sur des réactions chimiques de surface, cette méthode permet de synthétiser des couches minces conformes, avec un contrôle à l’échelle atomique de leur composition et de leur épaisseur. Ainsi, cette technique est particulièrement bien adaptée à l’ingénierie d’interfaces et participe à la fabrication de cellules solaires à très haut rendement de conversion.

Photo
20220116_0055
Chargement d'échantillons dans un bâti de dépôt de couches minces par ALD (Atomic Layer Deposition)
20220116_0056
Open media modal

Contrôle des paramètres d’un dépôt de couches minces par ALD (Atomic Layer Deposition). Basée sur des réactions chimiques de surface, cette méthode permet de synthétiser des couches minces conformes, avec un contrôle à l’échelle atomique de leur composition et de leur épaisseur. Ainsi, cette technique est particulièrement bien adaptée à l’ingénierie d’interfaces et participe à la fabrication de cellules solaires à très haut rendement de conversion.

Photo
20220116_0056
Contrôle des paramètres d’un dépôt de couches minces par ALD (Atomic Layer Deposition)
20220116_0057
Open media modal

Chargement d'échantillons dans un bâti de dépôt de couches minces par ALD (Atomic Layer Deposition). Basée sur des réactions chimiques de surface, cette méthode permet de synthétiser des couches minces conformes, avec un contrôle à l’échelle atomique de leur composition et de leur épaisseur. Ainsi, cette technique est particulièrement bien adaptée à l’ingénierie d’interfaces et participe à la fabrication de cellules solaires à très haut rendement de conversion.

Photo
20220116_0057
Chargement d'échantillons dans un bâti de dépôt de couches minces par ALD (Atomic Layer Deposition)

CNRS Images,

Our work is guided by the way scientists question the world around them and we translate their research into images to help people to understand the world better and to awaken their curiosity and wonderment.