20230019_0001
Open media modal

Modélisation d'un pore ouvert par un champ électrique dans une biomembrane. L'électroporation consiste à perforer la membrane cellulaire à l’aide d’un champ électrique pour délivrer une substance thérapeutique, comme des médicaments ou de l’ADN, à l’intérieur des cellules. Des scientifiques ont dévoilé des éléments essentiels à la connaissance de ce phénomène largement utilisé mais encore peu compris. Les résultats expérimentaux suggèrent ainsi que l’interaction du champ électrique avec les…

Photo
20230019_0001
Modélisation d'un pore ouvert par un champ électrique dans une biomembrane
Open media modal

Only available for non-commercial distribution

Certains objets sont très difficiles à recycler parce qu'ils sont faits de nombreuses couches de différents matériaux : baskets, panneaux photovoltaïques ou batteries. Au laboratoire ICMCB à Bordeaux, une équipe de chercheurs utilise les fluides supercritiques pour séparer les éléments. C'est un domaine entre le solide et le gazeux où les propriétés des matériaux sont étonnantes et promettent de belles avancées dans le recyclage des déchets...

Video
7697
Recycler grâce aux fluides supercritiques
20230057_0001
Open media modal

Termites du genre "Nasutitermes". Ils vivent en symbiose avec des microorganismes qui peuvent avoir un rôle de protection des colonies contre les stress biotiques, stress provoqués par des êtres vivants comme, entre autres, des microorganismes entomopathogènes (qui infectent les insectes). L'antibiorésistance (la résistance d’une bactérie à l’action d’un antibiotique) est un phénomène évolutif naturel qui s’est accentué de manière critique ces dernières années à cause d’une utilisation parfois…

Photo
20230057_0001
Termites du genre "Nasutitermes"
20230016_0002
Open media modal

Pesage de fibres cellulosiques destinées à la préparation d'une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs "metal-organic frameworks" (MOFs) sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les matériaux de stockage, les produits d’entretien ou les objets…

Photo
20230016_0002
Préparation d'une membrane Papersorb : pesage des fibres cellulosiques
20230016_0001
Open media modal

Pesage de nanocellulose en milieu aqueux destinée à la préparation d'une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs "metal-organic frameworks" (MOFs) sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les matériaux de stockage, les produits d’entretien ou les…

Photo
20230016_0001
Préparation d'une membrane Papersorb : pesage de nanocellulose en milieu aqueux
20230016_0004
Open media modal

Préparation d'une suspension de "metal-organic framework" (MOF) dans l'eau pour la réalisation d’une membrane Papersorb. Ce papier a une teneur en MOF de 75 % m/m (pourcentage massique). Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le…

Photo
20230016_0004
Préparation d'une membrane Papersorb : préparation d'une suspension de MOF dans l'eau
20230016_0005
Open media modal

Préparation d'une suspension de "metal-organic framework" (MOF) dans l'eau pour la réalisation d’une membrane Papersorb. Ce papier a une teneur en MOF de 75 % m/m (pourcentage massique). Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le…

Photo
20230016_0005
Préparation d'une membrane Papersorb : préparation d'une suspension de MOF dans l'eau
20230016_0003
Open media modal

Préparation d'une suspension de "metal-organic framework" (MOF) dans l'eau pour la réalisation d’une membrane Papersorb. Ce papier a une teneur en MOF de 75 % m/m (pourcentage massique). Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le…

Photo
20230016_0003
Préparation d'une membrane Papersorb : préparation d'une suspension de MOF dans l'eau
20230016_0006
Open media modal

Dispersion de poudre de "metal-organic framework" (MOF) dans l'eau pour la préparation d’une membrane Papersorb. Ce papier a une teneur en MOF de 75 % m/m (pourcentage massique). Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les…

Photo
20230016_0006
Préparation d'une membrane Papersorb : dispersion de poudre de MOF dans l'eau
20230016_0007
Open media modal

Ajout de fibres cellulosiques dans un broyeur, afin de les disperser dans de l’eau pour la fabrication d’une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs "metal-organic frameworks" (MOFs) sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les matériaux de stockage,…

Photo
20230016_0007
Préparation d'une membrane Papersorb : dispersion des fibres cellulosiques dans l'eau
20230016_0008
Open media modal

Broyage et dispersion de fibres cellulosiques pour la fabrication d’une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs "metal-organic frameworks" (MOFs) sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les matériaux de stockage, les produits d’entretien ou les…

Photo
20230016_0008
Préparation d'une membrane Papersorb : dispersion des fibres cellulosiques dans l'eau
20230016_0009
Open media modal

Récupération d’une suspension de fibres cellulosiques après broyage, durant la fabrication d’une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs "metal-organic frameworks" (MOFs) sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les matériaux de stockage, les…

Photo
20230016_0009
Préparation d'une membrane Papersorb : dispersion des fibres cellulosiques dans l'eau
20230016_0010
Open media modal

Observation d’une suspension de fibres cellulosiques utilisée pour la fabrication d’une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs "metal-organic frameworks" (MOFs) sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les matériaux de stockage, les produits d…

Photo
20230016_0010
Observation d’une suspension de fibres cellulosiques utilisée pour la préparation d'une membrane Papersorb
20230016_0011
Open media modal

Observation d’une suspension de fibres cellulosiques utilisée pour la fabrication d’une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs "metal-organic frameworks" (MOFs) sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les matériaux de stockage, les produits d…

Photo
20230016_0011
Observation d’une suspension de fibres cellulosiques utilisée pour la préparation d'une membrane Papersorb
20230016_0012
Open media modal

Ajout de nanocellulose dans une solution de fibres cellulosiques sous agitation pour réaliser une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs "metal-organic frameworks" (MOFs) sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les matériaux de stockage, les…

Photo
20230016_0012
Préparation d'une membrane Papersorb : dispersion de nanocellulose dans une solution de fibres cellulosiques
20230016_0013
Open media modal

Dispersion de nanocellulose dans une solution de fibres cellulosiques à l’aide d’une plaque d’agitation, pour réaliser une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs "metal-organic frameworks" (MOFs) sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les…

Photo
20230016_0013
Préparation d'une membrane Papersorb : dispersion de nanocellulose dans une solution de fibres cellulosiques
20230016_0015
Open media modal

Ajout de "metal-organic framework" (MOF) à une suspension de fibres cellulosiques. Cette étape est réalisée sous agitation afin d'obtenir une préparation homogène nécessaire à la fabrication d’une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces…

Photo
20230016_0015
Préparation d'une membrane Papersorb : ajout de MOF à une suspension de fibres cellulosiques
20230016_0016
Open media modal

Ajout de "metal-organic framework" (MOF) à une suspension de fibres cellulosiques. Cette étape est réalisée sous agitation afin d'obtenir une préparation homogène nécessaire à la fabrication d’une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces…

Photo
20230016_0016
Préparation d'une membrane Papersorb : ajout de MOF à une suspension de fibres cellulosiques
20230016_0014
Open media modal

Ajout de "metal-organic framework" (MOF) à une suspension de fibres cellulosiques. Cette étape est réalisée sous agitation afin d'obtenir une préparation homogène nécessaire à la fabrication d’une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces…

Photo
20230016_0014
Préparation d'une membrane Papersorb : ajout de MOF à une suspension de fibres cellulosiques
20230016_0017
Open media modal

Mise en place d’un filtre sur un montage à filtration sous vide. Cet équipement permettra de filtrer une solution composée de "metal-organic framework" (MOF) et de fibres cellulosiques afin de former une membrane Papersorb. Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces…

Photo
20230016_0017
Préparation d'une membrane Papersorb : filtration d'une solution de MOF et de fibres cellulosiques
20230016_0018
Open media modal

Filtration d’une solution composée de "metal-organic framework" (MOF) et de fibres cellulosiques sur un montage à filtration sous vide, afin de former une membrane Papersorb. Ce papier a une teneur en MOF de 75 % m/m (pourcentage massique). Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés…

Photo
20230016_0018
Préparation d'une membrane Papersorb : filtration d'une solution de MOF et de fibres cellulosiques
20230016_0019
Open media modal

Membrane Papersorb obtenue après filtration d’une solution composée de "metal-organic framework" (MOF) et de fibres cellulosiques à l'aide d'un montage de filtration sous vide. Ce papier a une teneur en MOF de 75 % m/m (pourcentage massique). Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des…

Photo
20230016_0019
Membrane Papersorb obtenue après filtration d'une solution de MOF et de fibres cellulosique
20230016_0020
Open media modal

Membrane Papersorb obtenue après filtration d’une solution composée de "metal-organic framework" (MOF) et de fibres cellulosiques. Ce papier a une teneur en MOF de 75 % m/m (pourcentage massique). Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par…

Photo
20230016_0020
Membrane Papersorb obtenue après filtration d'une solution de MOF et de fibres cellulosique
20230016_0021
Open media modal

Pressage d’une membrane Papersorb pour éliminer un excès d'eau, à la fin de sa fabrication. Ce papier a une teneur en MOF de 75 % m/m (pourcentage massique). Le projet Papersorb a pour objectif de produire des papiers adsorbants très efficaces et aptes à purifier l'air en piégeant sélectivement les composés organiques volatils (COVs) délétères, à l’aide d’un ou plusieurs MOFs sélectionnés en fonction des composés à éliminer. Ces polluants sont libérés par le mobilier, les matériaux de stockage,…

Photo
20230016_0021
Préparation d'une membrane Papersorb : pressage
20230016_0022
Open media modal

Disposition d’une membrane Papersorb dans une vitrine contenant un spécimen préservé dans une solution de formaldéhyde. La membrane Papersorb est un papier adsorbant avec une teneur en "metal-organic framework" (MOF) de 75 % m/m (pourcentage massique) qui peut être adaptée pour adsorber sélectivement le formaldéhyde soit dans des espaces clos (vitrine, boîte d’archives, etc.) ou intégrée au système de filtration pour un usage dynamique. Le projet Papersorb a pour objectif de produire un papier…

Photo
20230016_0022
Disposition d’une membrane Papersorb dans une vitrine contenant un spécimen d'histoire naturelle
20230016_0023
Open media modal

Test d’une membrane Papersorb dans une boîte de films cinématographiques. Ces films sont constitués d'acétate de cellulose, un polymère synthétique à l'origine d'émissions d'acide acétique. La membrane Papersorb est un papier adsorbant avec une teneur en "metal-organic framework" (MOF) de 75 % m/m (pourcentage massique) capable de capter sélectivement l'acide acétique. Elle peut être déposée aux côtés des objets dans les espaces clos (vitrine, boîte d’archives, etc.) ou intégrée au système de…

Photo
20230016_0023
Test d’une membrane Papersorb dans une boîte de films cinématographiques
20230016_0024
Open media modal

Test d’une membrane Papersorb dans une boîte de films cinématographiques. Ces films sont constitués d'acétate de cellulose, un polymère synthétique à l'origine d'émissions d'acide acétique. La membrane Papersorb est un papier adsorbant avec une teneur en "metal-organic framework" (MOF) de 75 % m/m (pourcentage massique) capable de capter sélectivement l'acide acétique. Elle peut être déposée aux côtés des objets dans les espaces clos (vitrine, boîte d’archives, etc.) ou intégrée au système de…

Photo
20230016_0024
Test d’une membrane Papersorb dans une boîte de films cinématographiques
20230016_0026
Open media modal

Test d’une membrane Papersorb dans une boîte d’archives conservant des films photographiques sur support en acétate de cellulose. Ce polymère synthétique est à l'origine d'émissions d'acide acétique. La membrane Papersorb est un papier adsorbant avec une teneur en "metal-organic framework" (MOF) de 75 % m/m (pourcentage massique) capable de capter sélectivement l'acide acétique. Elle peut être déposée aux côtés des objets dans les espaces clos (vitrine, boîte d’archives, etc.) ou intégrée au…

Photo
20230016_0026
Test d’une membrane Papersorb sur des films photographiques sur support en acétate de cellulose
20230016_0025
Open media modal

Test d’une membrane Papersorb dans une boîte d’archives conservant des films photographiques sur support en acétate de cellulose. Ce polymère synthétique est à l'origine d'émissions d'acide acétique. La membrane Papersorb est un papier adsorbant avec une teneur en "metal-organic framework" (MOF) de 75 % m/m (pourcentage massique) capable de capter sélectivement l'acide acétique. Elle peut être déposée aux côtés des objets dans les espaces clos (vitrine, boîte d’archives, etc.) ou intégrée au…

Photo
20230016_0025
Test d’une membrane Papersorb sur des films photographiques sur support en acétate de cellulose
20230016_0027
Open media modal

Test d’une membrane Papersorb dans un tiroir où sont conservés des spécimens d’histoire naturelle, foraminifères et pyrites. Ce papier est constitué à 75 % m/m (pourcentage massique) d'un "metal-organic framework" (MOF) permettant un piégeage sélectif des acides organiques ainsi que des composés soufrés. Ces polluants libérés par certains matériaux, comme le bois du tiroir, peuvent, en s’accumulant, endommager les objets. Ils provoquent par exemple la formation d’une efflorescence de sels d…

Photo
20230016_0027
Test d’une membrane Papersorb dans un tiroir où sont conservés des spécimens d’histoire naturelle
20230049_0003
Open media modal

Tranche d’un massif aluminium-fer (Al-Fe) vue en microscopie optique. Il a été élaboré par fusion à arc dans le but de former le composé métastable Al9Fe2. On observe notamment des étoiles à dix branches de 25 μm, entourées d’eutectique dans les espaces interdendritiques. Cette image est lauréate du prix de l'image Art & Science C'Nano 2023, dans la catégorie "Le voyage de Gulliver dans le monde des nanos". Dominique Dubaux : "Gulliver, amoureux de voyages et soucieux d’accroître sa fortune…

Photo
20230049_0003
Nuit étoilée
20230096_0002
Open media modal

Jeanne Crassous, lauréate de la médaille d'argent du CNRS 2023, présente à ses collègues une substance chirale émettant de la fluorescence circulairement polarisée. Directrice de recherche à l'Institut des sciences chimiques de Rennes, ses recherches s'articulent autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Le phénomène s’appelle la chiralité. Dans son parcours Jeanne Crassous s’est progressivement…

Photo
20230096_0002
Jeanne Crassous, lauréate de la médaille d'argent du CNRS, montre une substance chirale fluorescente
20230096_0003
Open media modal

Mise en place d'une réaction de photochimie pour produire des molécules en forme d'hélice (hélicoïdales), appelées "hélicènes". Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Ce phénomène se nomme la chiralité. Ces…

Photo
20230096_0003
Mise en place d'une réaction de photochimie pour produire des hélicènes, molécules en forme d'hélice
20230096_0004
Open media modal

Mise en place d'une réaction de photochimie pour produire des molécules en forme d'hélice (hélicoïdales), appelées "hélicènes". Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Ce phénomène se nomme la chiralité. Ces…

Photo
20230096_0004
Mise en place d'une réaction de photochimie pour produire des hélicènes, molécules en forme d'hélice
20230096_0005
Open media modal

Mise en place d'une réaction de photochimie pour produire des molécules en forme d'hélice (hélicoïdales), appelées "hélicènes". Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Ce phénomène se nomme la chiralité. Ces…

Photo
20230096_0005
Mise en place d'une réaction de photochimie pour produire des hélicènes, molécules en forme d'hélice
20230096_0006
Open media modal

Mise en place d'une réaction de photochimie pour produire des molécules en forme d'hélice (hélicoïdales), appelées "hélicènes". Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Ce phénomène se nomme la chiralité. Ces…

Photo
20230096_0006
Mise en place d'une réaction de photochimie pour produire des hélicènes, molécules en forme d'hélice
20230096_0007
Open media modal

Mise en place d'une réaction de photochimie pour produire des molécules en forme d'hélice (hélicoïdales), appelées "hélicènes". Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Ce phénomène se nomme la chiralité. Ces…

Photo
20230096_0007
Mise en place d'une réaction de photochimie pour produire des hélicènes, molécules en forme d'hélice
20230096_0008
Open media modal

Mise en place d'une réaction de photochimie pour produire des molécules en forme d'hélice (hélicoïdales), appelées "hélicènes". Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Ce phénomène se nomme la chiralité. Ces…

Photo
20230096_0008
Mise en place d'une réaction de photochimie pour produire des hélicènes, molécules en forme d'hélice
20230096_0009
Open media modal

Mise en place d'une réaction de photochimie pour produire des molécules en forme d'hélice (hélicoïdales), appelées "hélicènes". Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Ce phénomène se nomme la chiralité. Ces…

Photo
20230096_0009
Mise en place d'une réaction de photochimie pour produire des hélicènes, molécules en forme d'hélice
20230096_0010
Open media modal

Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice. Ici, le scientifique prépare un bain à base d'alcool et d'azote liquide, dans le but de refroidir le mélange réactionnel. Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la…

Photo
20230096_0010
Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice
20230096_0011
Open media modal

Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice. Ici, le scientifique prélève un réactif sous atmosphère inerte (sans oxygène et à l'abri de l'humidité). Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est…

Photo
20230096_0011
Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice
20230096_0012
Open media modal

Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice. Le mélange réactionnel est placé dans un tube de Schlenk connecté à une rampe à vide et sous atmosphère d'argon. Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la…

Photo
20230096_0012
Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice
20230096_0013
Open media modal

Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice. Le mélange réactionnel est placé dans un tube de Schlenk connecté à une rampe à vide et sous atmosphère d'argon. Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la…

Photo
20230096_0013
Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice
20230096_0014
Open media modal

Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice. Ici, le mélange réactionnel est placé dans un tube de Schlenk connecté à une rampe à vide et sous atmosphère d'argon. Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la…

Photo
20230096_0014
Mise en place d’une étape réactionnelle de la chimie des hélicènes, molécules en forme d’hélice
20230096_0015
Open media modal

Modèles moléculaires fabriqués par impression 3D représentant les deux énantiomères d'un hélicène, soit ses parties droite et gauche en forme d'hélice. Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Ce phénomène se…

Photo
20230096_0015
Modèles moléculaires fabriqués par impression 3D représentant les deux énantiomères d'un hélicène
20230096_0016
Open media modal

Modèles moléculaires fabriqués par impression 3D représentant les deux énantiomères d'un hélicène, soit ses parties droite et gauche en forme d'hélice. Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est l'image miroir l'une de l'autre. Ce phénomène se…

Photo
20230096_0016
Modèles moléculaires fabriqués par impression 3D représentant les deux énantiomères d'un hélicène
20230096_0017
Open media modal

Modèle moléculaire fabriqué par impression 3D permettant de comprendre la chimie dans l'espace tridimensionnel (la stéréochimie). Ici, le modèle représente une molécule hélicoïdale appelée "hélicène". Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est…

Photo
20230096_0017
Modèle moléculaire fabriqué par impression 3D permettant de comprendre la stéréochimie
20230096_0018
Open media modal

Modèle moléculaire fabriqué par impression 3D permettant de comprendre la chimie dans l'espace tridimensionnel (la stéréochimie). Ici, le modèle représente une molécule hélicoïdale appelée "hélicène". Ces recherches sont menées par Jeanne Crassous, lauréate de la médaille d’argent du CNRS 2023. Directrice de recherche à l'Institut des sciences chimiques de Rennes, son travail s'articule autour des énantiomères, des paires de molécules constituées des mêmes atomes, mais dont la structure 3D est…

Photo
20230096_0018
Modèle moléculaire fabriqué par impression 3D permettant de comprendre la stéréochimie

CNRS Images,

Our work is guided by the way scientists question the world around them and we translate their research into images to help people to understand the world better and to awaken their curiosity and wonderment.